監督學習
0.線性迴歸(加L一、L2正則化)
from __future__ import print_function from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("LinearRegressionWithElasticNet")\ .getOrCreate() # 加載數據 training = spark.read.format("libsvm")\ .load("data/mllib/sample_linear_regression_data.txt") lr = LinearRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8) # 擬合模型 lrModel = lr.fit(training) # 輸出係數和截距 print("Coefficients: %s" % str(lrModel.coefficients)) print("Intercept: %s" % str(lrModel.intercept)) # 模型信息總結輸出 trainingSummary = lrModel.summary print("numIterations: %d" % trainingSummary.totalIterations) print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory)) trainingSummary.residuals.show() print("RMSE: %f" % trainingSummary.rootMeanSquaredError) print("r2: %f" % trainingSummary.r2) spark.stop()
結果:html
Coefficients: [0.0,0.322925166774,-0.343854803456,1.91560170235,0.0528805868039,0.76596272046,0.0,-0.151053926692,-0.215879303609,0.220253691888] Intercept: 0.159893684424 numIterations: 7 objectiveHistory: [0.49999999999999994, 0.4967620357443381, 0.4936361664340463, 0.4936351537897608, 0.4936351214177871, 0.49363512062528014, 0.4936351206216114] +--------------------+ | residuals| +--------------------+ | -9.889232683103197| | 0.5533794340053554| | -5.204019455758823| | -20.566686715507508| | -9.4497405180564| | -6.909112502719486| | -10.00431602969873| | 2.062397807050484| | 3.1117508432954772| | -15.893608229419382| | -5.036284254673026| | 6.483215876994333| | 12.429497299109002| | -20.32003219007654| | -2.0049838218725005| | -17.867901734183793| | 7.646455887420495| | -2.2653482182417406| |-0.10308920436195645| | -1.380034070385301| +--------------------+ only showing top 20 rows RMSE: 10.189077 r2: 0.022861
1.廣義線性模型
from __future__ import print_function from pyspark.sql import SparkSession from pyspark.ml.regression import GeneralizedLinearRegression spark = SparkSession\ .builder\ .appName("GeneralizedLinearRegressionExample")\ .getOrCreate() # 加載數據 dataset = spark.read.format("libsvm")\ .load("data/mllib/sample_linear_regression_data.txt") glr = GeneralizedLinearRegression(family="gaussian", link="identity", maxIter=10, regParam=0.3) # 擬合模型 model = glr.fit(dataset) # 輸出係數和截距 print("Coefficients: " + str(model.coefficients)) print("Intercept: " + str(model.intercept)) # 模型信息總結與輸出 summary = model.summary print("Coefficient Standard Errors: " + str(summary.coefficientStandardErrors)) print("T Values: " + str(summary.tValues)) print("P Values: " + str(summary.pValues)) print("Dispersion: " + str(summary.dispersion)) print("Null Deviance: " + str(summary.nullDeviance)) print("Residual Degree Of Freedom Null: " + str(summary.residualDegreeOfFreedomNull)) print("Deviance: " + str(summary.deviance)) print("Residual Degree Of Freedom: " + str(summary.residualDegreeOfFreedom)) print("AIC: " + str(summary.aic)) print("Deviance Residuals: ") summary.residuals().show() spark.stop()
結果:node
Coefficients: [0.0105418280813,0.800325310056,-0.784516554142,2.36798871714,0.501000208986,1.12223511598,-0.292682439862,-0.498371743232,-0.603579718068,0.672555006719] Intercept: 0.145921761452 Coefficient Standard Errors: [0.7950428434287478, 0.8049713176546897, 0.7975916824772489, 0.8312649247659919, 0.7945436200517938, 0.8118992572197593, 0.7919506385542777, 0.7973378214726764, 0.8300714999626418, 0.7771333489686802, 0.463930109648428] T Values: [0.013259446542269243, 0.9942283563442594, -0.9836067393599172, 2.848657084633759, 0.6305509179635714, 1.382234441029355, -0.3695715687490668, -0.6250446546128238, -0.7271418403049983, 0.8654306337661122, 0.31453393176593286] P Values: [0.989426199114056, 0.32060241580811044, 0.3257943227369877, 0.004575078538306521, 0.5286281628105467, 0.16752945248679119, 0.7118614002322872, 0.5322327097421431, 0.467486325282384, 0.3872259825794293, 0.753249430501097] Dispersion: 105.609883568 Null Deviance: 53229.3654339 Residual Degree Of Freedom Null: 500 Deviance: 51748.8429484 Residual Degree Of Freedom: 490 AIC: 3769.18958718 Deviance Residuals: +-------------------+ | devianceResiduals| +-------------------+ |-10.974359174246889| | 0.8872320138420559| | -4.596541837478908| |-20.411667435019638| |-10.270419345342642| |-6.0156058956799905| |-10.663939415849267| | 2.1153960525024713| | 3.9807132379137675| |-17.225218272069533| | -4.611647633532147| | 6.4176669407698546| | 11.407137945300537| | -20.70176540467664| | -2.683748540510967| |-16.755494794232536| | 8.154668342638725| |-1.4355057987358848| |-0.6435058688185704| | -1.13802589316832| +-------------------+ only showing top 20 rows
2.邏輯迴歸
from __future__ import print_function from pyspark.ml.classification import LogisticRegression from pyspark.sql import SparkSession spark = SparkSession \ .builder \ .appName("LogisticRegressionSummary") \ .getOrCreate() # 加載數據 training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8) # 擬合模型 lrModel = lr.fit(training) # 模型信息總結與輸出 trainingSummary = lrModel.summary # 輸出每一輪的損失函數值 objectiveHistory = trainingSummary.objectiveHistory print("objectiveHistory:") for objective in objectiveHistory: print(objective) # ROC曲線 trainingSummary.roc.show() print("areaUnderROC: " + str(trainingSummary.areaUnderROC)) # Set the model threshold to maximize F-Measure #fMeasure = trainingSummary.fMeasureByThreshold #maxFMeasure = fMeasure.groupBy(['threshold']).max('F-Measure').select('max(F-Measure)') #bestThreshold = fMeasure.where(fMeasure['F-Measure'] == maxFMeasure.select('max(F-Measure)')['max(F-Measure)']).select('threshold')['threshold'] #lr.setThreshold(bestThreshold) spark.stop()
結果:python
objectiveHistory: 0.683314913574 0.666287575147 0.621706854603 0.612726524589 0.60603479868 0.603175068757 0.596962153484 0.594074303198 0.590608924334 0.589472457649 0.588218777573 +---+--------------------+ |FPR| TPR| +---+--------------------+ |0.0| 0.0| |0.0|0.017543859649122806| |0.0| 0.03508771929824561| |0.0| 0.05263157894736842| |0.0| 0.07017543859649122| |0.0| 0.08771929824561403| |0.0| 0.10526315789473684| |0.0| 0.12280701754385964| |0.0| 0.14035087719298245| |0.0| 0.15789473684210525| |0.0| 0.17543859649122806| |0.0| 0.19298245614035087| |0.0| 0.21052631578947367| |0.0| 0.22807017543859648| |0.0| 0.24561403508771928| |0.0| 0.2631578947368421| |0.0| 0.2807017543859649| |0.0| 0.2982456140350877| |0.0| 0.3157894736842105| |0.0| 0.3333333333333333| +---+--------------------+ only showing top 20 rows areaUnderROC: 1.0
from __future__ import print_function from pyspark.ml.classification import LogisticRegression from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("LogisticRegressionWithElasticNet")\ .getOrCreate() # 加載數據 training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8) # 擬合模型 lrModel = lr.fit(training) # 係數與截距 print("Coefficients: " + str(lrModel.coefficients)) print("Intercept: " + str(lrModel.intercept)) # 多項式邏輯迴歸 mlr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8, family="multinomial") # 擬合模型 mlrModel = mlr.fit(training) # 輸出係數 print("Multinomial coefficients: " + str(mlrModel.coefficientMatrix)) print("Multinomial intercepts: " + str(mlrModel.interceptVector)) spark.stop()
結果:sql
Coefficients: (692,[244,263,272,300,301,328,350,351,378,379,405,406,407,428,433,434,455,456,461,462,483,484,489,490,496,511,512,517,539,540,568],[-7.35398352419e-05,-9.10273850559e-05,-0.000194674305469,-0.000203006424735,-3.14761833149e-05,-6.84297760266e-05,1.58836268982e-05,1.40234970914e-05,0.00035432047525,0.000114432728982,0.000100167123837,0.00060141093038,0.000284024817912,-0.000115410847365,0.000385996886313,0.000635019557424,-0.000115064123846,-0.00015271865865,0.000280493380899,0.000607011747119,-0.000200845966325,-0.000142107557929,0.000273901034116,0.00027730456245,-9.83802702727e-05,-0.000380852244352,-0.000253151980086,0.000277477147708,-0.000244361976392,-0.00153947446876,-0.000230733284113]) Intercept: 0.224563159613 Multinomial coefficients: DenseMatrix([[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.]]) Multinomial intercepts: [-0.120658794459,0.120658794459]
3.多分類邏輯迴歸
from __future__ import print_function from pyspark.ml.classification import LogisticRegression from pyspark.sql import SparkSession spark = SparkSession \ .builder \ .appName("MulticlassLogisticRegressionWithElasticNet") \ .getOrCreate() # 加載數據 training = spark \ .read \ .format("libsvm") \ .load("data/mllib/sample_multiclass_classification_data.txt") lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8) # 擬合模型 lrModel = lr.fit(training) # 輸出係數 print("Coefficients: \n" + str(lrModel.coefficientMatrix)) print("Intercept: " + str(lrModel.interceptVector)) # 預測結果 lrModel.transform(training).show() spark.stop()
結果:app
Coefficients: DenseMatrix([[ 0. , 0. , 0. , 0.31764832], [ 0. , 0. , -0.78039435, -0.37696114], [ 0. , 0. , 0. , 0. ]]) Intercept: [0.0516523165983,-0.123912249909,0.0722599333102] +-----+--------------------+--------------------+--------------------+----------+ |label| features| rawPrediction| probability|prediction| +-----+--------------------+--------------------+--------------------+----------+ | 1.0|(4,[0,1,2,3],[-0....|[-0.2130545101220...|[0.19824091021950...| 1.0| | 1.0|(4,[0,1,2,3],[-0....|[-0.2395254151479...|[0.18250386256254...| 1.0| | 1.0|(4,[0,1,2,3],[-0....|[-0.2130545101220...|[0.18980556250236...| 1.0| | 1.0|(4,[0,1,2,3],[-0....|[-0.2395254151479...|[0.19632523546632...| 1.0| | 0.0|(4,[0,1,2,3],[0.1...|[0.21047647616023...|[0.43750398183438...| 0.0| | 1.0|(4,[0,2,3],[-0.83...|[-0.2395254151479...|[0.18250386256254...| 1.0| | 2.0|(4,[0,1,2,3],[-1....|[0.07812299927036...|[0.37581775428218...| 0.0| | 2.0|(4,[0,1,2,3],[-1....|[0.05165230377890...|[0.35102739153795...| 2.0| | 1.0|(4,[0,1,2,3],[-0....|[-0.2659960025254...|[0.17808226409449...| 1.0| | 0.0|(4,[0,2,3],[0.611...|[0.18400588878268...|[0.44258017540583...| 0.0| | 0.0|(4,[0,1,2,3],[0.2...|[0.23694706353777...|[0.44442301486604...| 0.0| | 1.0|(4,[0,1,2,3],[-0....|[-0.2659960025254...|[0.17539206930356...| 1.0| | 1.0|(4,[0,1,2,3],[-0....|[-0.2395254151479...|[0.18250386256254...| 1.0| | 2.0|(4,[0,1,2,3],[-0....|[0.05165230377890...|[0.35371124645092...| 2.0| | 2.0|(4,[0,1,2,3],[-0....|[-0.0277597631826...|[0.32360705108265...| 2.0| | 2.0|(4,[0,1,2,3],[-0....|[0.02518163392628...|[0.33909561029444...| 2.0| | 1.0|(4,[0,2,3],[-0.94...|[-0.2395254151479...|[0.17976563656243...| 1.0| | 2.0|(4,[0,1,2,3],[-0....|[-0.0012891758050...|[0.32994371314262...| 2.0| | 0.0|(4,[0,1,2,3],[0.1...|[0.10459380900173...|[0.39691355784123...| 0.0| | 2.0|(4,[0,1,2,3],[-0....|[0.02518163392628...|[0.34718685710751...| 2.0| +-----+--------------------+--------------------+--------------------+----------+ only showing top 20 rows
4.多層感知器(MLP)
from __future__ import print_function from pyspark.ml.classification import MultilayerPerceptronClassifier from pyspark.ml.evaluation import MulticlassClassificationEvaluator from pyspark.sql import SparkSession spark = SparkSession\ .builder.appName("multilayer_perceptron_classification_example").getOrCreate() # 加載數據 data = spark.read.format("libsvm")\ .load("data/mllib/sample_multiclass_classification_data.txt") # 切分訓練集和測試集 splits = data.randomSplit([0.6, 0.4], 1234) train = splits[0] test = splits[1] # 輸入、隱層、隱層、輸出個數 layers = [4, 5, 4, 3] # 建立多層感知器 trainer = MultilayerPerceptronClassifier(maxIter=100, layers=layers, blockSize=128, seed=1234) # 訓練模型 model = trainer.fit(train) # 預測和計算準確度 result = model.transform(test) result.show() predictionAndLabels = result.select("prediction", "label") evaluator = MulticlassClassificationEvaluator(metricName="accuracy") print("Test set accuracy = " + str(evaluator.evaluate(predictionAndLabels))) spark.stop()
結果:dom
+-----+--------------------+----------+ |label| features|prediction| +-----+--------------------+----------+ | 0.0|(4,[0,1,2,3],[-0....| 2.0| | 0.0|(4,[0,1,2,3],[-0....| 0.0| | 0.0|(4,[0,1,2,3],[-0....| 0.0| | 0.0|(4,[0,1,2,3],[-0....| 2.0| | 0.0|(4,[0,1,2,3],[-0....| 2.0| | 0.0|(4,[0,1,2,3],[-1....| 2.0| | 0.0|(4,[0,1,2,3],[0.1...| 0.0| | 0.0|(4,[0,1,2,3],[0.2...| 0.0| | 0.0|(4,[0,1,2,3],[0.3...| 0.0| | 0.0|(4,[0,1,2,3],[0.3...| 0.0| | 0.0|(4,[0,1,2,3],[0.3...| 0.0| | 0.0|(4,[0,1,2,3],[0.4...| 0.0| | 0.0|(4,[0,1,2,3],[0.5...| 0.0| | 0.0|(4,[0,1,2,3],[0.7...| 0.0| | 0.0|(4,[0,1,2,3],[0.8...| 0.0| | 0.0|(4,[0,1,2,3],[1.0...| 0.0| | 0.0|(4,[0,2,3],[0.166...| 0.0| | 0.0|(4,[0,2,3],[0.388...| 0.0| | 1.0|(4,[0,1,2,3],[-0....| 1.0| | 1.0|(4,[0,1,2,3],[-0....| 1.0| +-----+--------------------+----------+ only showing top 20 rows Test set accuracy = 0.901960784314
5.決策樹分類
from __future__ import print_function from pyspark.ml import Pipeline from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.feature import StringIndexer, VectorIndexer from pyspark.ml.evaluation import MulticlassClassificationEvaluator from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("DecisionTreeClassificationExample")\ .getOrCreate() # 加載數據 data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") # Index labels, adding metadata to the label column. # Fit on whole dataset to include all labels in index. labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data) # Automatically identify categorical features, and index them. # We specify maxCategories so features with > 4 distinct values are treated as continuous. featureIndexer =\ VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data) # Split the data into training and test sets (30% held out for testing) (trainingData, testData) = data.randomSplit([0.7, 0.3]) # Train a DecisionTree model. dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures") # Chain indexers and tree in a Pipeline pipeline = Pipeline(stages=[labelIndexer, featureIndexer, dt]) # Train model. This also runs the indexers. model = pipeline.fit(trainingData) # Make predictions. predictions = model.transform(testData) # Select example rows to display. predictions.select("prediction", "indexedLabel", "features").show(5) # Select (prediction, true label) and compute test error evaluator = MulticlassClassificationEvaluator( labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy") accuracy = evaluator.evaluate(predictions) print("Test Error = %g " % (1.0 - accuracy)) treeModel = model.stages[2] # summary only print(treeModel) spark.stop()
結果:ide
+----------+------------+--------------------+ |prediction|indexedLabel| features| +----------+------------+--------------------+ | 1.0| 1.0|(692,[98,99,100,1...| | 1.0| 1.0|(692,[100,101,102...| | 1.0| 1.0|(692,[123,124,125...| | 1.0| 1.0|(692,[124,125,126...| | 1.0| 1.0|(692,[125,126,127...| +----------+------------+--------------------+ only showing top 5 rows Test Error = 0.0333333 DecisionTreeClassificationModel (uid=DecisionTreeClassifier_4bf3a2017c8143b08d57) of depth 1 with 3 nodes