L3-007. 天梯地圖
時間限制
300 ms
內存限制
65536 kB
代碼長度限制
8000 B
判題程序
Standard
做者
陳越
本題要求你實現一個天梯賽專屬在線地圖,隊員輸入本身學校所在地和賽場地點後,該地圖應該推薦兩條路線:一條是最快到達路線;一條是最短距離的路線。題目保證對任意的查詢請求,地圖上都至少存在一條可達路線。ios
輸入格式:spa
輸入在第一行給出兩個正整數N(2 <= N <=500)和M,分別爲地圖中全部標記地點的個數和鏈接地點的道路條數。隨後M行,每行按以下格式給出一條道路的信息:code
V1 V2 one-way length timeblog
其中V1和V2是道路的兩個端點的編號(從0到N-1);若是該道路是從V1到V2的單行線,則one-way爲1,不然爲0;length是道路的長度;time是經過該路所須要的時間。最後給出一對起點和終點的編號。ip
輸出格式:內存
首先按下列格式輸出最快到達的時間T和用節點編號表示的路線:string
Time = T: 起點 => 節點1 => ... => 終點it
而後在下一行按下列格式輸出最短距離D和用節點編號表示的路線:io
Distance = D: 起點 => 節點1 => ... => 終點class
若是最快到達路線不惟一,則輸出幾條最快路線中最短的那條,題目保證這條路線是惟一的。而若是最短距離的路線不惟一,則輸出途徑節點數最少的那條,題目保證這條路線是惟一的。
若是這兩條路線是徹底同樣的,則按下列格式輸出:
Time = T; Distance = D: 起點 => 節點1 => ... => 終點
輸入樣例1:10 15 0 1 0 1 1 8 0 0 1 1 4 8 1 1 1 5 4 0 2 3 5 9 1 1 4 0 6 0 1 1 7 3 1 1 2 8 3 1 1 2 2 5 0 2 2 2 1 1 1 1 1 5 0 1 3 1 4 0 1 1 9 7 1 1 3 3 1 0 2 5 6 3 1 2 1 5 3輸出樣例1:
Time = 6: 5 => 4 => 8 => 3 Distance = 3: 5 => 1 => 3輸入樣例2:
7 9 0 4 1 1 1 1 6 1 3 1 2 6 1 1 1 2 5 1 2 2 3 0 0 1 1 3 1 1 3 1 3 2 1 2 1 4 5 0 2 2 6 5 1 2 1 3 5輸出樣例2:
Time = 3; Distance = 4: 3 => 2 => 5
思路:最短路,不過麻煩的是多條最短路中推薦最優的路線,並輸出路徑。路徑的還原能夠不斷記錄前驅節點,注意的是每一個節點的前驅節點可能不止一個,全須要記錄,最後dfs搜索最優路徑。
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<cmath> #include<algorithm> #include<cstring> #include<vector> #include<string> #include<iomanip> #include<map> #include<stack> #include<set> #include<queue> using namespace std; #define N_MAX 500+20 #define INF 0x3f3f3f3f int n, m; int s, t; struct edge { int to, cost_t, cost_l; edge() {} edge(int to,int cost_t,int cost_l):to(to),cost_t(cost_t),cost_l(cost_l) {} }; struct P { int first, second;//first距離,second節點編號 P() {} P(int first,int second):first(first),second(second) {} bool operator < (const P&b) const{ return first > b.first; } }; vector<edge>G[N_MAX]; int d_t[N_MAX], d_l[N_MAX]; vector<int>prev_l[N_MAX];//記錄最短路徑的前驅結點,每一個點均可能會有幾個前驅結點 vector<int>prev_t[N_MAX];//記錄最短時限路徑的前驅結點,同上 int Dist[N_MAX][N_MAX];//鄰接矩陣 void dijkstra1(int s) { priority_queue<P>que; fill(d_l,d_l+n,INF); d_l[s] = 0; que.push(P(0, s)); while (!que.empty()) { P p = que.top(); que.pop(); int v = p.second; if (d_l[v] < p.first)continue; for (int i = 0; i < G[v].size();i++) { edge e = G[v][i]; if (d_l[e.to] > d_l[v] + e.cost_l) { d_l[e.to] = d_l[v] + e.cost_l; que.push(P(d_l[e.to], e.to)); prev_l[e.to].clear(); prev_l[e.to].push_back(v); } else if (d_l[e.to] == d_l[v] + e.cost_l) { prev_l[e.to].push_back(v); } } } } void dijkstra2(int s) { priority_queue<P>que; fill(d_t, d_t + n, INF); d_t[s] = 0; que.push(P(0, s)); while (!que.empty()) { P p = que.top(); que.pop(); int v = p.second; if (d_t[v] < p.first)continue; for (int i = 0; i < G[v].size(); i++) { edge e = G[v][i]; if (d_t[e.to] > d_t[v] + e.cost_t) { d_t[e.to] = d_t[v] + e.cost_t; que.push(P(d_t[e.to], e.to)); prev_t[e.to].clear(); prev_t[e.to].push_back(v); } else if (d_t[e.to] == d_t[v] + e.cost_t) { prev_t[e.to].push_back(v); } } } } int road2[N_MAX]; vector<int>r2; int min_step = INF; void dfs2(int x,int step) {//最短距離同樣,取節點最少的路徑 road2[step] = x; if (x == s) {//到達起點 if (min_step > step) { min_step = step; r2.clear(); for (int i = step; i >= 0; i--)r2.push_back(road2[i]); } return; } for (int i = 0; i < prev_l[x].size();i++) { dfs2(prev_l[x][i], step + 1); } } int road1[N_MAX]; vector<int>r1; int min_dist = INF; void dfs1(int x, int step,int dist) {//最短期同樣,取最短路徑 road1[step] = x; if (x == s) {//到達起點 if (min_dist > dist) { min_dist = dist; r1.clear(); for (int i = step; i >= 0; i--)r1.push_back(road1[i]); } return; } for (int i = 0; i < prev_t[x].size(); i++) { int from = prev_t[x][i]; dfs1(from, step + 1,dist+Dist[from][x]); } } int main() { while (scanf("%d%d",&n,&m)!=EOF) { for (int i = 0; i < m;i++) { int from, to, one, L, T; scanf("%d%d%d%d%d", &from, &to, &one, &L, &T); G[from].push_back(edge(to, T, L)); Dist[from][to] = L; if (!one) { G[to].push_back(edge(from, T, L)); Dist[to][from] = L; } } scanf("%d%d",&s,&t); dijkstra1(s); dijkstra2(s); dfs1(t, 0, 0); dfs2(t, 0); if (r1 == r2) { printf("Time = %d; Distance = %d:",d_t[t],d_l[t]); for (int i = 0; i < r1.size(); i++) printf(" %d%s",r1[i],i+1==r1.size()? "\n" : " =>"); } else { printf("Time = %d:",d_t[t]); for (int i = 0; i < r1.size();i++) { printf(" %d%s", r1[i], i + 1 == r1.size() ? "\n" : " =>"); } printf("Distance = %d:", d_l[t]); for (int i = 0; i < r2.size();i++) { printf(" %d%s", r2[i], i + 1 == r2.size() ? "\n" : " =>"); } } } return 0; }