JavaShuo
欄目
標籤
Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Sit
時間 2020-07-16
標籤
discriminability
diversity
batch
nuclear
norm
maximization
label
insufficient
sit
简体版
原文
原文鏈接
Abstract 論文做者提出:web In some label insufficient situations, the performance degrades on the decision boundary with high data density. Acommon solution is to directly minimize the Shannon Entropy, but t
>>阅读原文<<
相關文章
1.
Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Sit
2.
CVPR 2020(Oral) | 中科院等提出BNM:標籤不充分下的判別性與多樣性約束方法
3.
Evolutionary approaches towards AI: past, present, and future
4.
Clustering:Gaussian Mixture Model and Expectation Maximization
5.
CVPR/AAAI/ECCV頂會論文/代碼
6.
CF677C Vanya and Label
7.
tf.keras入門(4) Explore over-fitting and under-fitting
8.
Covariate shift and batch normalization
9.
DIM(Learning deep representations by mutual information estimation and maximization)
10.
Batch Training
更多相關文章...
•
ASP.NET Label 控件
-
ASP.NET 教程
•
XSL-FO list-item-label 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
maximization
diversity
insufficient
sit
batch
label
batch&each
action.....and
between...and
react+and
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
NLP《詞彙表示方法(六)ELMO》
2.
必看!RDS 數據庫入門一本通(附網盤鏈接)
3.
阿里雲1C2G虛擬機【99/年】羊毛黨集合啦!
4.
10秒鐘的Cat 6A網線認證儀_DSX2-5000 CH
5.
074《從零開始學Python網絡爬蟲》小記
6.
實例12--會動的地圖
7.
聽薦 | 「談笑風聲」,一次投資圈的嘗試
8.
阿里技術官手寫800多頁PDF總結《精通Java Web整合開發》
9.
設計模式之☞狀態模式實戰
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Sit
2.
CVPR 2020(Oral) | 中科院等提出BNM:標籤不充分下的判別性與多樣性約束方法
3.
Evolutionary approaches towards AI: past, present, and future
4.
Clustering:Gaussian Mixture Model and Expectation Maximization
5.
CVPR/AAAI/ECCV頂會論文/代碼
6.
CF677C Vanya and Label
7.
tf.keras入門(4) Explore over-fitting and under-fitting
8.
Covariate shift and batch normalization
9.
DIM(Learning deep representations by mutual information estimation and maximization)
10.
Batch Training
>>更多相關文章<<