深度學習 (二十三):卷積神經網絡之NIN模型

引入

  NIN意爲網絡中的網絡,提出了串聯多個由卷積層和「全鏈接」層構成的小網絡,以此構建一個深層網絡 [ 1 ] \color{red}^{[1]} [1]html

1 NIN塊

  NIN使用 1 × 1 1 \times 1 1×1卷積層來替代全鏈接層,從而使空間信息可以天然傳遞到後面的層中去。
  下圖對比了NIN同AlexNetVGG網絡在結構上的主要區別:

  NIN塊是NIN模型中的基礎塊,其特色以下:
  1)由一個卷積層加兩個充當全鏈接層的 1 × 1 1 \times 1 1×1卷積層串聯而成;
  2)第一個卷積層的超參數能夠自行設置,餘下通常固定。python

""" @author: Inki @contact: inki.yinji@qq.com @version: Created in 2020 1221, last modified in 2020 1221. """

import time
import torch
import torch.nn as nn
from torch import optim
from torch.nn import functional
from util.SimpleTool import load_data_fashion_mnist, train, FlattenLayer


def nin_block(in_channels, out_channels, kernel_size, stride, padding):
    ret_block = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
                              nn.ReLU(),
                              nn.Conv2d(out_channels, out_channels, kernel_size=1),
                              nn.ReLU(),
                              nn.Conv2d(out_channels, out_channels, kernel_size=1),
                              nn.ReLU())

    return ret_block

2 NIN模型

  模型特色:
  1)卷積窗口形狀分別爲 11 × 11 11 \times 11 11×11 5 × 5 5 \times 5 5×5 3 × 3 3 \times 3 3×3,輸出通道與AlexNet一致;
  2)每一個NIN塊後接一個步幅爲 3 3 3、窗口形狀爲 3 × 3 3 \times 3 3×3的最大池化層;
  3)去掉了AlexNet中最後的 3 3 3個全鏈接層,而用輸出通道數等於標籤類別數的NIN塊,而後使用全局平均池化層對每一個通道中全部元素求平均並直接用於分類;
  4)全局平均池化層即窗口形狀等於輸入空間形狀的平均池化層:可顯著減少模型參數尺寸,從而緩解過擬合
  5)該設計可能致使訓練時間增長。web

class GlobalAvgPool2d(nn.Module):

    def __init__(self):
        super(GlobalAvgPool2d, self).__init__()

    def forward(self, x):
        """ The forward function. """
        return functional.avg_pool2d(x, kernel_size=x.size()[2:])


def get_net():
    ret_net = nn.Sequential(nin_block(1, 96, kernel_size=11, stride=4, padding=0),
                            nn.MaxPool2d(kernel_size=3, stride=2),
                            nin_block(96, 256, kernel_size=5, stride=1, padding=2),
                            nn.MaxPool2d(kernel_size=3, stride=2),
                            nin_block(256, 384, kernel_size=3, stride=1, padding=1),
                            nn.MaxPool2d(kernel_size=3, stride=2),
                            nn.Dropout(0.5),
                            nin_block(384, 10, kernel_size=3, stride=1, padding=1),
                            GlobalAvgPool2d(),
                            FlattenLayer())

    return ret_net


def test1():
    x = torch.rand(1, 1, 224, 224)
    temp_net = get_net()
    for name, block in temp_net.named_children():
        x = block(x)
        print(name, 'output shape:', x.shape)


if __name__ == '__main__':
    test1()

  輸出以下:網絡

0 output shape: torch.Size([1, 96, 54, 54])
1 output shape: torch.Size([1, 96, 26, 26])
2 output shape: torch.Size([1, 256, 26, 26])
3 output shape: torch.Size([1, 256, 12, 12])
4 output shape: torch.Size([1, 384, 12, 12])
5 output shape: torch.Size([1, 384, 5, 5])
6 output shape: torch.Size([1, 384, 5, 5])
7 output shape: torch.Size([1, 10, 5, 5])
8 output shape: torch.Size([1, 10, 1, 1])
9 output shape: torch.Size([1, 10])

3 模型訓練

def test2():
    temp_batch_size = 128
    temp_resize = 224
    temp_le = 0.002
    temp_num_epochs = 5
    temp_net = get_net()
    temp_tr_iter, temp_te_iter = load_data_fashion_mnist(temp_batch_size, resize=temp_resize)
    temp_optimizer = optim.Adam(temp_net.parameters(), lr=temp_le)
    train(temp_net, temp_tr_iter, temp_te_iter, temp_batch_size, temp_optimizer, num_epochs=temp_num_epochs)


if __name__ == '__main__':
    test2()

完整代碼

""" @author: Inki @contact: inki.yinji@qq.com @version: Created in 2020 1221, last modified in 2020 1221. """

import time
import torch
import torch.nn as nn
from torch import optim
from torch.nn import functional
from util.SimpleTool import load_data_fashion_mnist, train, FlattenLayer


def nin_block(in_channels, out_channels, kernel_size, stride, padding):
    ret_block = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
                              nn.ReLU(),
                              nn.Conv2d(out_channels, out_channels, kernel_size=1),
                              nn.ReLU(),
                              nn.Conv2d(out_channels, out_channels, kernel_size=1),
                              nn.ReLU())

    return ret_block


class GlobalAvgPool2d(nn.Module):

    def __init__(self):
        super(GlobalAvgPool2d, self).__init__()

    def forward(self, x):
        """ The forward function. """
        return functional.avg_pool2d(x, kernel_size=x.size()[2:])


def get_net():
    ret_net = nn.Sequential(nin_block(1, 96, kernel_size=11, stride=4, padding=0),
                            nn.MaxPool2d(kernel_size=3, stride=2),
                            nin_block(96, 256, kernel_size=5, stride=1, padding=2),
                            nn.MaxPool2d(kernel_size=3, stride=2),
                            nin_block(256, 384, kernel_size=3, stride=1, padding=1),
                            nn.MaxPool2d(kernel_size=3, stride=2),
                            nn.Dropout(0.5),
                            nin_block(384, 10, kernel_size=3, stride=1, padding=1),
                            GlobalAvgPool2d(),
                            FlattenLayer())

    return ret_net


def test1():
    x = torch.rand(1, 1, 224, 224)
    temp_net = get_net()
    for name, block in temp_net.named_children():
        x = block(x)
        print(name, 'output shape:', x.shape)


def test2():
    temp_batch_size = 128
    temp_resize = 224
    temp_le = 0.002
    temp_num_epochs = 5
    temp_net = get_net()
    temp_tr_iter, temp_te_iter = load_data_fashion_mnist(temp_batch_size, resize=temp_resize)
    temp_optimizer = optim.Adam(temp_net.parameters(), lr=temp_le)
    train(temp_net, temp_tr_iter, temp_te_iter, temp_batch_size, temp_optimizer, num_epochs=temp_num_epochs)


if __name__ == '__main__':
    test2()

參考庫

util.SimpleTool

""" @author: Inki @contact: inki.yinji@qq.com @version: Created in 2020 0903, last modified in 2020 1221. @note: Some common function, and all given vector data's type must be numpy.array. """

import time
import numpy as np
import sys
import scipy.io as scio
import torch
import torchvision.transforms as transforms
import torchvision
from torch import nn
from multiprocessing import cpu_count


def get_iter(tr, tr_lab, te, te_lab):
    """ Get iterator. :param tr: The training set. tr_lab: The training set's label. te: The test set. te_lab: The test set's label. """
    yield tr, tr_lab, te, te_lab


def is_print(para_str, para_is_print=True):
    """ Is print? :param para_str: The print string. para_is_print: True print else not. """
    if para_is_print:
        print(para_str)


def load_file(para_path):
    """ Load file. :param para_file_name: The path of the given file. :return The data. """
    temp_type = para_path.split('.')[-1]

    if temp_type == 'mat':
        ret_data = scio.loadmat(para_path)
        return ret_data['data']
    else:
        with open(para_path) as temp_fd:
            ret_data = temp_fd.readlines()

        return ret_data


def load_data_fashion_mnist(batch_size=10, root='D:/Data/Datasets/FashionMNIST', resize=None):
    """ Download the fashion mnist dataset and then load into memory. """
    trans = []
    if resize:
        trans.append(transforms.Resize(size=resize))
    trans.append(transforms.ToTensor())

    transform = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
    if sys.platform.startswith('win'):
        num_workers = 0
    else:
        num_workers = cpu_count()
    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return train_iter, test_iter


def owa_weight(para_num, para_type='linear_decrease'):
    """ The ordered weighted averaging operators (OWA) can replace the maximum or minimum operators. And the purpose of this function is to generate the owa weights. And the more refer is: R. R. Yager, J. Kacprzyk, The ordered weighted averaging operators: Theory and applications, Springer Science & Business Media, 2012. :param para_num: The length of weights list. para_type: 'linear_decrease'; 'inverse_additive', and its default setting is 'linear_decrease'. :return The owa weights. """
    if para_num == 1:
        return np.array([1])
    else:
        if para_type == 'linear_decrease':
            temp_num = 2 / para_num / (para_num + 1)
            return np.array([(para_num - i) * temp_num for i in range(para_num)])
        elif para_type == 'inverse_additive':
            temp_num = np.sum([1 / i for i in range(1, para_num + 1)])
            return np.array([1 / i / temp_num for i in range(1, para_num + 1)])
        else:
            return owa_weight(para_num)


def print_go_round(para_idx, para_str='Program processing'):
    """ Print the round. :param para_idx: The current index. para_str: The print words. """
    round_list = ["\\", "|", "/", "-"]
    print('\r' + para_str + ': ' + round_list[para_idx % 4], end="")


def print_progress_bar(para_idx, para_len):
    """ Print the progress bar. :param para_idx: The current index. para_len: The loop length. """
    print('\r' + '▇' * int(para_idx // (para_len / 50)) + str(np.ceil((para_idx + 1) * 100 / para_len)) + '%', end='')


def train(net, tr_iter, te_iter, batch_size, optimizer,
          loss=nn.CrossEntropyLoss(),
          device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'),
          num_epochs=100):
    """ The train function. """
    net = net.to(device)
    temp_batch_count = 0
    print("Training on", device)
    for epoch in range(num_epochs):
        temp_tr_loss_sum, temp_tr_acc_sum, temp_num, temp_start_time = 0., 0., 0, time.time()
        for x, y in tr_iter:
            x = x.to(device)
            y = y.to(device)
            temp_y_pred = net(x)
            temp_loss = loss(temp_y_pred, y)
            optimizer.zero_grad()
            temp_loss.backward()
            optimizer.step()
            temp_tr_loss_sum += temp_loss.cpu().item()
            temp_tr_acc_sum += (temp_y_pred.argmax(dim=1) == y).sum().cpu().item()
            temp_num += y.shape[0]
            temp_batch_count += 1
        test_acc = evaluate_accuracy(te_iter, net)
        print("Epoch %d, loss %.4f, training acc %.3f, test ass %.3f, time %.1f s" %
              (epoch + 1, temp_tr_loss_sum / temp_batch_count, temp_tr_acc_sum / temp_num, test_acc,
               time.time() - temp_start_time))


def evaluate_accuracy(data_iter, net, device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')):
    """ The evaluate function, and the performance measure is accuracy. """
    ret_acc, temp_num = 0., 0
    with torch.no_grad():
        for x, y in data_iter:
            net.eval() # The evaluate mode, and the dropout is closed.
            ret_acc += (net(x.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
            net.train()
            temp_num += y.shape[0]

    return ret_acc / temp_num


class Count(dict):
    """ The count class with dict. """
    def __missing__(self, __key):
        return 0


class FlattenLayer(torch.nn.Module):
    def __init__(self):
        super(FlattenLayer, self).__init__()

    def forward(self, x):
        return x.view(x.shape[0], -1)


if __name__ == '__main__':
    load_data_fashion_mnist()

【1】李沐、Aston Zhang等老師的這本《動手學深度學習》一書。app

本文同步分享在 博客「因吉」(CSDN)。
若有侵權,請聯繫 support@oschina.cn 刪除。
本文參與「OSC源創計劃」,歡迎正在閱讀的你也加入,一塊兒分享。ide

相關文章
相關標籤/搜索