JavaShuo
欄目
標籤
《Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models》
時間 2021-01-02
原文
原文鏈接
來源:CVPR2018 一、Introduction 第一篇同時利用GAN和Reinforcement Learning(RL)做跨媒體檢索的文章。 這個網絡可以同時做三個跨媒體的任務:cross-media retrieval,image caption and text-to-image synthesis(對於後兩個任務,文章只給出了可視化的結果,沒有給出定量的分析)。 這篇文章發表在CVP
>>阅读原文<<
相關文章
1.
Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models
2.
IMPROVING GENERATIVE ADVERSARIAL NETWORKS WITH DENOISING FEATURE MATCHING(Bingio-ICLR2017)
3.
Beyond Part Models- Person Retrieval with Refined Part Pooling
4.
Beyond Part Models: Person Retrieval with Refined Part Pooling (ECCV2018)
5.
【論文精讀】Improving Simple Models with Confidence Profiles
6.
【ReID】Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional...
7.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
8.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
9.
DCGAN應用: Semantic Image Inpainting with Deep Generative Models
10.
GAUSSIAN MIXTURE VAE: LESSONS IN VARIATIONAL INFERENCE, GENERATIVE MODELS, AND DEEP NETS
更多相關文章...
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
W3C RDF and OWL 活動
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
算法總結-股票買賣
相關標籤/搜索
look
generative
improving
imagine
retrieval
match
models
index+match
models&orm
2.models
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正確理解商業智能 BI 的價值所在
2.
解決梯度消失梯度爆炸強力推薦的一個算法-----LSTM(長短時記憶神經網絡)
3.
解決梯度消失梯度爆炸強力推薦的一個算法-----GRU(門控循環神經⽹絡)
4.
HDU4565
5.
算概率投硬幣
6.
密碼算法特性
7.
DICOMRT-DiTools:clouddicom源碼解析(1)
8.
HDU-6128
9.
計算機網絡知識點詳解(持續更新...)
10.
hods2896(AC自動機)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models
2.
IMPROVING GENERATIVE ADVERSARIAL NETWORKS WITH DENOISING FEATURE MATCHING(Bingio-ICLR2017)
3.
Beyond Part Models- Person Retrieval with Refined Part Pooling
4.
Beyond Part Models: Person Retrieval with Refined Part Pooling (ECCV2018)
5.
【論文精讀】Improving Simple Models with Confidence Profiles
6.
【ReID】Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional...
7.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
8.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
9.
DCGAN應用: Semantic Image Inpainting with Deep Generative Models
10.
GAUSSIAN MIXTURE VAE: LESSONS IN VARIATIONAL INFERENCE, GENERATIVE MODELS, AND DEEP NETS
>>更多相關文章<<