JavaShuo
欄目
標籤
Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models
時間 2021-01-16
原文
原文鏈接
CVPR2018的一篇關於跨媒體檢索的文章,paper鏈接https://arxiv.org/abs/1711.06420,一作是南洋理工大學的PHD,作者的homepage http://jxgu.cc/,code已經被released出來了https://github.com/ujiuxiang/NLP_Practice.PyTorch/tree/master/cross_modal_retr
>>阅读原文<<
相關文章
1.
《Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models》
2.
IMPROVING GENERATIVE ADVERSARIAL NETWORKS WITH DENOISING FEATURE MATCHING(Bingio-ICLR2017)
3.
Beyond Part Models- Person Retrieval with Refined Part Pooling
4.
Beyond Part Models: Person Retrieval with Refined Part Pooling (ECCV2018)
5.
【論文精讀】Improving Simple Models with Confidence Profiles
6.
【ReID】Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional...
7.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
8.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
9.
DCGAN應用: Semantic Image Inpainting with Deep Generative Models
10.
GAUSSIAN MIXTURE VAE: LESSONS IN VARIATIONAL INFERENCE, GENERATIVE MODELS, AND DEEP NETS
更多相關文章...
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
W3C RDF and OWL 活動
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
算法總結-股票買賣
相關標籤/搜索
look
generative
improving
imagine
retrieval
match
models
index+match
models&orm
2.models
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Mud Puddles ( bfs )
2.
ReSIProcate環境搭建
3.
SNAT(IP段)和配置網絡服務、網絡會話
4.
第8章 Linux文件類型及查找命令實踐
5.
AIO介紹(八)
6.
中年轉行互聯網,原動力、計劃、行動(中)
7.
詳解如何讓自己的網站/APP/應用支持IPV6訪問,從域名解析配置到服務器配置詳細步驟完整。
8.
PHP 5 構建系統
9.
不看後悔系列!Rocket MQ 使用排查指南(附網盤鏈接)
10.
如何簡單創建虛擬機(CentoOS 6.10)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
《Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models》
2.
IMPROVING GENERATIVE ADVERSARIAL NETWORKS WITH DENOISING FEATURE MATCHING(Bingio-ICLR2017)
3.
Beyond Part Models- Person Retrieval with Refined Part Pooling
4.
Beyond Part Models: Person Retrieval with Refined Part Pooling (ECCV2018)
5.
【論文精讀】Improving Simple Models with Confidence Profiles
6.
【ReID】Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional...
7.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
8.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
9.
DCGAN應用: Semantic Image Inpainting with Deep Generative Models
10.
GAUSSIAN MIXTURE VAE: LESSONS IN VARIATIONAL INFERENCE, GENERATIVE MODELS, AND DEEP NETS
>>更多相關文章<<