collaborative filtering的思想很簡單,人們喜歡像本身的人喜歡的東西(人以類聚,user-based),人們喜歡像本身喜歡的東西的東西(item-based)物以羣分。 java
package MahoutStudy.inaction; import java.io.File; import java.io.IOException; import java.util.List; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.eval.IRStatistics; import org.apache.mahout.cf.taste.eval.RecommenderBuilder; import org.apache.mahout.cf.taste.eval.RecommenderEvaluator; import org.apache.mahout.cf.taste.eval.RecommenderIRStatsEvaluator; import org.apache.mahout.cf.taste.impl.eval.AverageAbsoluteDifferenceRecommenderEvaluator; import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood; import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender; import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.cf.taste.recommender.Recommender; import org.apache.mahout.cf.taste.similarity.UserSimilarity; import org.apache.mahout.common.RandomUtils; class RecommenderIntro_1 { static void testIR() throws Exception { RandomUtils.useTestSeed(); DataModel model = new FileDataModel(new File("intro.csv")); RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator(); RecommenderBuilder recommenderBuilder = new RecommenderBuilder() { public Recommender buildRecommender(DataModel model) throws TasteException { UserSimilarity similarity = new PearsonCorrelationSimilarity(model); UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model); return new GenericUserBasedRecommender(model, neighborhood, similarity); } }; IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 2, GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);// CHOOSE_THRESHOLD用來區分什麼是good // recommendation,mahout內部使用平均值+標準差 System.out.println(stats.getPrecision()); System.out.println(stats.getRecall()); } static void testEvaluate() throws IOException, TasteException { RandomUtils.useTestSeed(); DataModel model = new FileDataModel(new File("intro.csv")); RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator(); // RecommenderEvaluator evaluator = new RMSRecommenderEvaluator(); RecommenderBuilder builder = new RecommenderBuilder() { public Recommender buildRecommender(DataModel model) throws TasteException { UserSimilarity similarity = new PearsonCorrelationSimilarity(model); UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model); return new GenericUserBasedRecommender(model, neighborhood, similarity); // return new SlopeOneRecommender(model); } }; double score = evaluator.evaluate(builder, null, model, 0.8, 1.0); System.out.println(score); } static void test() throws Exception { DataModel model = new FileDataModel(new File("intro.csv")); UserSimilarity similarity = new PearsonCorrelationSimilarity(model); UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model); Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity); List<RecommendedItem> recommendations = recommender.recommend(1, 3); for (RecommendedItem recommendation : recommendations) { System.out.println(recommendation); } } public static void main(String[] args) throws Exception { test(); testEvaluate(); testIR(); } }