阿里電話面試問題----100萬個URL怎樣找到出現頻率最高的前100個?

內推阿里電話面試中面試官給我出的一個題:html

我想的頭一個解決方式。就是放到stl 的map裏面對出現的頻率做爲pair的第二個字段進行排序。以後依照排序結果返回:python

如下口說無憑,show your code,固然在討論帖子中遭遇了project界大牛的sql代碼在技術上的碾壓。什麼是作project的,什麼是project師的思惟。不要一味的埋頭搞算法。ios


討論帖:c++

http://bbs.csdn.net/topics/391080906web


python 抓取百度搜索結果的討論貼:面試

http://bbs.csdn.net/topics/391077668算法


實驗數據。python從百度抓得:sql

# -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""


import urllib2 
import re 
import os

#connect to a URL 
#一頁的搜索結果中url大概是200個左右
file_url = open('url.txt','ab+')
#搜索框裏的東西,這塊可以設置成數字好讓每次搜索的結果不同
search = '123'
url = "http://www.baidu.com/s?

wd="+search def setUrlToFile(): website = urllib2.urlopen(url) #read html code html = website.read() #use re.findall to get all the links links = re.findall('"((http|ftp)s?數據庫

://.*?)"', html) for s in links: print s[0] if len(s[0]) < 256: file_url.write(s[0]+'\r\n') #收集實驗數據 for i in range(0,50): setUrlToFile() file_url.close() ###需要又一次打開再讀一下 file_url = open('url.txt','r') file_lines = len(file_url.readlines()) print "there are %d url in %s" %(file_lines,file_url) file_url.close() post

方法1:

c++  寫的讀 url.txt放到map裏面

對map<string , int>的value進行排序,獲得前100個

執行一下也就55s,仍是很是快的。url長度進行了限制小於256個字符


#pragma once
/*
//計算代碼段執行時間的類
//
*/
#include <iostream>

#ifndef ComputeTime_h
#define ComputeTime_h


//單位毫秒

class   ComputeTime    
{  
private:  
	int Initialized;  
	__int64 Frequency;  
	__int64 BeginTime;  
		    
public:  

	bool Avaliable();  
	double End();  
	bool Begin();  
	ComputeTime();  
	virtual   ~ComputeTime();    

};  






#endif
#include "stdafx.h"
#include "ComputeTime.h"
#include <iostream>
#include <Windows.h>

ComputeTime::ComputeTime()  
{  
	Initialized=QueryPerformanceFrequency((LARGE_INTEGER   *)&Frequency);  
}  
   
 ComputeTime::~ComputeTime()  
{  
		    
}  
   
 bool   ComputeTime::Begin()  
{  
	if(!Initialized)  
		return 0;

	 return   QueryPerformanceCounter((LARGE_INTEGER   *)&BeginTime);  
 }
     
 double   ComputeTime::End()
{  
	 if(!Initialized)  
		return 0;

		   
	 __int64   endtime;  
		   
	 QueryPerformanceCounter((LARGE_INTEGER   *)&endtime);  
		    
		  
	 __int64   elapsed = endtime-BeginTime;  
		    
		  
	 return   ((double)elapsed/(double)Frequency)*1000.0;  //單位毫秒
 }  

 bool   ComputeTime::Avaliable()
{  
	 return Initialized;  
}   


// sortUrl.cpp : 定義控制檯應用程序的入口點。
//

#include "stdafx.h"
//#include <utility>    
#include <vector>
#include <map>
#include <fstream>
#include <iostream>
#include <string>
#include <algorithm>
#include "ComputeTime.h"

using namespace std;

map<string,int> urlfrequency;


typedef pair<string, int> PAIR;


struct CmpByValue 
{
	bool operator()(const PAIR& lhs, const PAIR& rhs) 
	{
		return lhs.second > rhs.second;
	}
};

void find_largeTH(map<string,int> urlfrequency)
{
	//把map中元素轉存到vector中 ,依照value排序
	vector<PAIR> url_quency_vec(urlfrequency.begin(), urlfrequency.end());
	sort(url_quency_vec.begin(), url_quency_vec.end(), CmpByValue());
	//url_quency_vec.size()
	for (int i = 0; i != 100; ++i) 
	{
		cout<<url_quency_vec[i].first<<endl;
		cout<<url_quency_vec[i].second<<endl;
	}
}


//urlheap的創建過程,URL插入時候存在的
void insertUrl(string url)
{
	pair<map<string ,int>::iterator, bool> Insert_Pair;
	Insert_Pair = urlfrequency.insert(map<string, int>::value_type(url,1));



	if (Insert_Pair.second == false)
	{
		(Insert_Pair.first->second++);
	}
	

}


int _tmain(int argc, _TCHAR* argv[])
{
	fstream URLfile;
	char buffer[1024]; 
	URLfile.open("url.txt",ios::in|ios::out|ios::binary);

	if (! URLfile.is_open())  
	{ cout << "Error opening file"; exit (1); } 
	else
	{
	cout<<"open file success!"<<endl;
	}

	ComputeTime cp;
	cp.Begin();
	int i = 0;
	 while (!URLfile.eof())  
	{  
	URLfile.getline (buffer,1024);  
	//cout << buffer << endl;  
	string temp(buffer);
	//cout<<i++<<endl;
	insertUrl(temp);
	}  
	      


	find_largeTH(urlfrequency);

	cout<<"running time: "<<cp.End()<<"ms"<<endl;

	getchar();
	//system("pause");
	return 0;
}



實驗結果:55s還不算太差。可以接受,畢竟是頭腦中的第一個解決方式。



方法2:

hash code 版本號。僅僅是不知道怎麼 hash和url關聯起來:


// urlFind.cpp : 定義控制檯應用程序的入口點。

// // sortUrl.cpp : 定義控制檯應用程序的入口點。

// #include "stdafx.h" #include <vector> #include <map> #include <fstream> #include <iostream> #include <string> #include <algorithm> #include <unordered_map> #include "ComputeTime.h" using namespace std; map<unsigned int,int> urlhash; typedef pair<unsigned int, int> PAIR; struct info{ string url; int cnt; bool operator<(const info &r) const { return cnt>r.cnt; } }; unordered_map<string,int> count; //priority_queue<info> pq; struct CmpByValue { bool operator()(const PAIR& lhs, const PAIR& rhs) { return lhs.second > rhs.second; } }; void find_largeTH(map<unsigned int,int> urlhash) { //把map中元素轉存到vector中 ,依照value排序 vector<PAIR> url_quency_vec(urlhash.begin(), urlhash.end()); sort(url_quency_vec.begin(), url_quency_vec.end(), CmpByValue()); //url_quency_vec.size() for (int i = 0; i != 100; ++i) { cout<<url_quency_vec[i].first<<endl; cout<<url_quency_vec[i].second<<endl; } } // BKDR Hash Function unsigned int BKDRHash(char *str) { unsigned int seed = 131; // 31 131 1313 13131 131313 etc.. unsigned int hash = 0; while (*str) { hash = hash * seed + (*str++); } return (hash & 0x7FFFFFFF); } // void insertUrl(string url) { unsigned int hashvalue = BKDRHash((char *)url.c_str()); pair<map<unsigned int ,int>::iterator, bool> Insert_Pair; Insert_Pair = urlhash.insert(map<unsigned int, int>::value_type(hashvalue,1)); if (Insert_Pair.second == false) { (Insert_Pair.first->second++); } } int _tmain(int argc, _TCHAR* argv[]) { fstream URLfile; char buffer[1024]; URLfile.open("url.txt",ios::in|ios::out|ios::binary); if (! URLfile.is_open()) { cout << "Error opening file"; exit (1); } else { cout<<"open file success!"<<endl; } ComputeTime cp; cp.Begin(); int i = 0; while (!URLfile.eof()) { URLfile.getline (buffer,1024); //cout << buffer << endl; string temp(buffer); //cout<<i++<<endl; insertUrl(temp); } find_largeTH(urlhash); cout<<"running time: "<<cp.End()<<"ms"<<endl; getchar(); //system("pause"); return 0; }



性能15秒左右:缺點在於沒有把hashcode和url進行關聯,技術的處理速度已經很可觀了


方法3:

如下用STL的hash容器unordered_map。和優先隊列(就是堆)來實現這個問題。


// urlFind.cpp : 定義控制檯應用程序的入口點。

// // sortUrl.cpp : 定義控制檯應用程序的入口點。 // #include "stdafx.h" #include <vector> #include <map> #include <fstream> #include <iostream> #include <string> #include <algorithm> #include <unordered_map> #include <queue> #include "ComputeTime.h" using namespace std; typedef pair<string, int> PAIR; struct info { string url; int cnt; bool operator<(const info &r) const { return cnt<r.cnt; } }; unordered_map<string,int> hash_url; priority_queue<info> pq; void find_largeTH(unordered_map<string,int> urlhash) { unordered_map<string,int>::iterator iter = urlhash.begin(); info temp; for (; iter!= urlhash.end();++iter) { temp.url = iter->first; temp.cnt = iter->second; pq.push(temp); } for (int i = 0; i != 100; ++i) { cout<<pq.top().url<<endl; cout<<pq.top().cnt<<endl; pq.pop(); } } void insertUrl(string url) { pair<unordered_map<string ,int>::iterator, bool> Insert_Pair; Insert_Pair = hash_url.insert(unordered_map<string, int>::value_type(url,1)); if (Insert_Pair.second == false) { (Insert_Pair.first->second++); } } int _tmain(int argc, _TCHAR* argv[]) { fstream URLfile; char buffer[1024]; URLfile.open("url.txt",ios::in|ios::out|ios::binary); if (! URLfile.is_open()) { cout << "Error opening file"; exit (1); } else { cout<<"open file success!"<<endl; } ComputeTime cp; cp.Begin(); int i = 0; while (!URLfile.eof()) { URLfile.getline (buffer,1024); //cout << buffer << endl; string temp(buffer); //cout<<i++<<endl; insertUrl(temp); } find_largeTH(hash_url); cout<<"running time: "<<cp.End()<<"ms"<<endl; getchar(); //system("pause"); return 0; }


基本上算是算法裏面比較優秀的解決方式了,面試官假設能聽到這個方法應該會比較欣喜。






方法4:實驗耗時未知,技術上碾壓了上述解決方式,中高年輕人。不要反覆造輪子。哈哈

數據庫,SQL語句:

load data infile "d:/bigdata.txt" into table tb_url(url);

SELECT
	url,
	count(url) as show_count
	FROM
	tb_url
	GROUP BY url
	ORDER BY show_count desc
	LIMIT 100




相關文章
相關標籤/搜索