JavaShuo
欄目
標籤
Demo - Speaker Recognition
時間 2021-07-12
原文
原文鏈接
Java source code in Github: speakerRecognition This demo is based on Microsoft Cognitive Service. If you have no idea about that, please click here. Prerequisites Microsoft Speaker Recognition API FFm
>>阅读原文<<
相關文章
1.
An Example of Azure Speaker Recognition API
2.
X-VECTOR:ROBUST DNN EMBEDDING FOR SPEAKER RECOGNITION
3.
speaker recognition 聲紋識別
4.
The NIST Year 2010 Speaker Recognition Evaluation Plan
5.
Demo - Face Recognition
6.
Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification
7.
2019--Target Speaker Extraction for Multi-Talker Speaker Verification
8.
Utterance-level Aggregation For Speaker Recognition In The Wild筆記
9.
Within-sample variability-invariant loss for robust speaker recognition under noisy environments
10.
翻譯:Practical Hidden Voice Attacks against Speech and Speaker Recognition Systems
更多相關文章...
•
ionic 顏色
-
ionic 教程
•
XML DOM 遍歷節點樹
-
XML DOM 教程
•
RxJava操作符(一)Creating Observables
•
RxJava操作符(八)Aggregate
相關標籤/搜索
recognition
speaker
demo
jQuery Demo
c#demo
sdk&demo
c++demo
demo+paper+code
DIOCP-DEMO說明
附源代碼Demo
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
融合阿里雲,牛客助您找到心儀好工作
2.
解決jdbc(jdbctemplate)在測試類時不報錯在TomCatb部署後報錯
3.
解決PyCharm GoLand IntelliJ 等 JetBrains 系列 IDE無法輸入中文
4.
vue+ant design中關於圖片請求不顯示的問題。
5.
insufficient memory && Native memory allocation (malloc) failed
6.
解決IDEA用Maven創建的Web工程不能創建Java Class文件的問題
7.
[已解決] Error: Cannot download ‘https://start.spring.io/starter.zip?
8.
在idea讓java文件夾正常使用
9.
Eclipse啓動提示「subversive connector discovery」
10.
帥某-技巧-快速轉帖博主文章(article_content)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
An Example of Azure Speaker Recognition API
2.
X-VECTOR:ROBUST DNN EMBEDDING FOR SPEAKER RECOGNITION
3.
speaker recognition 聲紋識別
4.
The NIST Year 2010 Speaker Recognition Evaluation Plan
5.
Demo - Face Recognition
6.
Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification
7.
2019--Target Speaker Extraction for Multi-Talker Speaker Verification
8.
Utterance-level Aggregation For Speaker Recognition In The Wild筆記
9.
Within-sample variability-invariant loss for robust speaker recognition under noisy environments
10.
翻譯:Practical Hidden Voice Attacks against Speech and Speaker Recognition Systems
>>更多相關文章<<