【python-opencv】opencv基礎操做之二

opencv_2javascript

 

 

 
1 圖像的基本操做
Python的版本是Python3.6,openCV使用的是cv2
 
1.4 圖像的基本信息

圖像的基本信息有:行、列、通道、像素數目和圖像數據類型css

In [1]:
import cv2
import requests
import time
from PIL import Image
from io import BytesIO
import numpy as np
from matplotlib import pyplot as plt

%matplotlib inline
# set None proxy
import os
os.environ['no_proxy'] = '*' 
In [2]:
# draw a cvMat using plt.
def draw(image):
        plt.figure() # 設置畫布
        plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
        plt.show()
In [3]:
# get file(of Internet picture)
class InternetPicture:
    def __init__(self, url):
        # attribute
        self.url = url
        self.img = None
        # initial method
        self.get() # self表明類的實例, 而非類自己,因此self.get(self)--> self.get()
        self.show()
        self.info()

    # get Internet Picture
    def get(self):
        for i in range(5): # 多獲取幾回,增長成功率
            start=time.time()
            file = requests.get(self.url)
            img = cv2.imdecode(np.fromstring(file.content, np.uint8), 1)    #file.content 是讀取的遠程文件的字節流
            print(i + 1, ' time of Requesting Time:', time.time()-start)
        self.img = img
        print('get a file of:', type(img))
    
    # show image
    def show(self):
        #using plt draw picture
        plt.figure() # 設置畫布
        plt.imshow(cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB))
        plt.show()
    
    def info(self):
        # using cv2 to read Internet file of picture
        color_img = self.img
        gray_img = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY)

        # 獲取信息:行,列,通道,像素數目,圖像數據類型
        print('獲取信息:行,列,通道,像素數目,圖像數據類型')
        print(color_img.shape, color_img.size, color_img.dtype)
        print(gray_img.shape, gray_img.size, gray_img.dtype)
        print('self.img: get a numpy image')
        print('self.show(): show a numpy image using plt')

        # using PIL.Image to read Internet file of picture
        ## image = Image.open(BytesIO(file.content))
        ## image.show()
In [4]:
url = "https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1565165195&di=0ae43289971ee5b3cdc36eb9c9612a0a&imgtype=jpg&er=1&src=http%3A%2F%2Fvpic.video.qq.com%2F3388556%2Fx0540ujyh6i_ori_3.jpg"
pic = InternetPicture(url)
 
1  time of Requesting Time: 0.04800081253051758
2  time of Requesting Time: 0.06759953498840332
3  time of Requesting Time: 0.043440818786621094
4  time of Requesting Time: 0.040445566177368164
5  time of Requesting Time: 0.040354013442993164
get a file of: <class 'numpy.ndarray'>
 
 
獲取信息:行,列,通道,像素數目,圖像數據類型
(360, 640, 3) 691200 uint8
(360, 640) 230400 uint8
self.img: get a numpy image
self.show(): show a numpy image using plt
 
1.5 在圖像上輸出文本

在處理圖片的時候,咱們常常會須要把一些信息直接以文字的形式輸出在圖片上,咱們能夠用cv2.putText函數實現html

函數原型:putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]])html5

參數依次是:圖像、文本信息、位置、字體、顏色(RGB)、線粗(缺省值爲1)、等等java

In [5]:
url = "https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1565234351&di=92352e792456d5f5b366cf9a7f9ba266&imgtype=jpg&er=1&src=http%3A%2F%2Fvpic.video.qq.com%2F3388556%2Fo0398rwyrwy_ori_3.jpg"
pic = InternetPicture(url)
 
1  time of Requesting Time: 0.03394651412963867
2  time of Requesting Time: 0.03303980827331543
3  time of Requesting Time: 0.03547406196594238
4  time of Requesting Time: 0.035376787185668945
5  time of Requesting Time: 0.044396400451660156
get a file of: <class 'numpy.ndarray'>
 
 
獲取信息:行,列,通道,像素數目,圖像數據類型
(426, 640, 3) 817920 uint8
(426, 640) 272640 uint8
self.img: get a numpy image
self.show(): show a numpy image using plt
In [6]:
img = pic.img
cv2.putText(img, 'Hello World', (500, 350), 0, 0.5, (255, 255, 255), 1, 100)  # 最後一個參數是100,讓字體更平滑
draw(img)
 
 
1.6 圖像平移

圖像的平移其實就是仿射變換的特殊形式,下一節會仔細講仿射變換。python

示例代碼(將圖像平移到到點(200,100)處):jquery

In [7]:
img = pic.img
print(type(img))
rows, cols , _= img.shape # 默認讀取了3個通道
M = np.float32([[1, 0, 200], [0, 1, 100]])
dst = cv2.warpAffine(img, M, (cols, rows))
draw(dst)
 
<class 'numpy.ndarray'>
 
 
1.6 圖像平移

有時須要將圖像對R、G、B三個通道分別進行操做linux

示例代碼:android

In [8]:
img = pic.img
img2 = cv2.resize(img, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_CUBIC)
b, g, r = cv2.split(img2)


# 建立畫布, 把四個圖畫在一個畫布裏面
plt.figure(figsize=(15,10))
# (1,1)
ax1 = plt.subplot(2, 2, 1)
ax2 = plt.subplot(2, 2, 2)
ax3 = plt.subplot(2, 2, 3)
ax4 = plt.subplot(2, 2, 4)

# 選擇ax1
plt.sca(ax1)
plt.imshow(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))
# 選擇ax2
plt.sca(ax2)
plt.imshow(cv2.cvtColor(b, cv2.COLOR_BGR2RGB))
# 選擇ax3
plt.sca(ax3)
plt.imshow(cv2.cvtColor(g, cv2.COLOR_BGR2RGB))
# 選擇ax4
plt.sca(ax4)
plt.imshow(cv2.cvtColor(r, cv2.COLOR_BGR2RGB))
Out[8]:
<matplotlib.image.AxesImage at 0x7f0eb7616b70>
 
In [ ]:
相關文章
相關標籤/搜索