Blob爲模板類,能夠理解爲四維數組,n * c * h * w的結構,Layer內爲blob輸入data和diff,Layer間的blob爲學習的參數.內部封裝了SyncedMemory類,該類負責存儲分配和主機與設備的同步c++
protected: shared_ptr<SyncedMemory> data_; // data指針 shared_ptr<SyncedMemory> diff_; // diff指針 vector<int> shape_; // blob形狀 int count_; // blob的nchw // 當前的Blob容量,當Blob reshape後count> capacity_時,capacity_ = count_; // 從新new 而後 reset data和 diff int capacity_;
Blob類中經常使用的函數以下所示
Blob<float>test; //explicit關鍵字的做用是禁止單參數構造函數的隱式轉換 explicit Blob(const int num, const int channels, const int height, const int width); test.shape_string();//初始爲空 0 0 0 0 //Reshape函數將num,channels,height,width傳遞給vector shape_ test.Reshape(1,2,3,4);// shape_string() 1,2,3,4 test.shape(i);// NCHW test.count(int start_axis,int end_axis); // start_axis---end_axis .x* shape[i] test.count();// nchw count(1) chw count(2) hw..... //shared_ptr<SyncedMemory> data_->cpu_data(); const float* data = test.cpu_data(); const float* diff = test.cpu_diff(); float* data_1 = test.mutable_cpu_data();//mutable修飾的表示能夠修改內部值 float* diff_1 = test.mutable_cpu_diff(); test.asum_data();//求和 L1範數 test.sumsq_data();//平方和 L2範數 test.Update();//data = data-diff; a.ToProto(BlobProto& bp,true/false);//(FromProto) // if < 0 ,return num_axis()+axis_index;//索引序列 int index = a.CanonicalAxisIndex(int axis_index); int offset(n,c,h,w);//((n*channels()+c)*height()+h)*width()+w float data_at(n,c,h,w);//return cpu_data()[offset(n,c,h,w)]; float diff_at(n,c,h,w);//return cpu_diff()[offset(n,c,h,w)]; inline const shared_ptr<SyncedMemory>& data() const{return _data}; void scale_data(Dtype scale_factor);// data乘以一個標量。同理 scale_diff(); void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false, bool reshape = false); // copy_diff是否複製diff
//Blob內部值寫入到磁盤 Blob<float>a; a.Reshape(1,2,3,4); const int count = a.count(); for (size_t i = 0; i < count; i++) { a[i] = i;//init the test Blob } BlobProto bp,bp2; a.ToProto(&bp,true);//寫入data和diff到bp中 WriteProtoToBinaryFile(bp,"a.blob");//寫入磁盤 ReadProtoFromBinaryFile("a.blob",&bp2);//從磁盤讀取blob Blob<float>b; b.FromProto(bp2,true);//序列化對象bp2中克隆b,完整克隆 for (size_t n = 0; n < b.num(); n++) { for (size_t c = 0; c < b.channels(); c++) { for (size_t h = 0; h < b.height(); h++) { for (size_t w = 0; w < b.width(); w++) { cout<<"b["<<n<<"]["<<c<<"]["<<h<<"]["<<w<<"]["<<w<<"]="<< b[(((n*b.channels()+c)*b.height)+h)*b.width()+w]<<endl; //(((n*c+ci)*h+hi)*w+wi) } } } }
本部分的實現未考慮參數是否合理。通常操做blob須要分CPU和GPU,採用math_functions具體計算
template <typename Dtype> void Blob<Dtype>::Reshape(const vector<int>& shape){//reshape操做 count_ = 1;//初始count_ NCHW; shape_.resize(shape.size()); for (size_t i = 0; i < shape.size(); i++) { count_ *= shape[i]; shape_[i] = shape[i]; if (count_ > capacity_) { //reshape的size大於了目前的最大容量 capacity_ = count_; data_.reset(new SyncedMemory(capacity_*sizeof(Dtype))); diff_.reset(new SyncedMemory(capacity_*sizeof(Dtype))); } } } template <typename Dtype> void Blob<Dtype>::Reshape(int n,int c,int h ,int w){//reshape操做 vector<int>shape(4); shape[0] = n; shape[1] = c; shape[2] = h; shape[3] = w; Reshape(shape); } template <typename Dtype> const Dtype* Blob<Dtype>::cpu_data(){ //實際調用的shared_ptr<SyncedMemory>data_->cpu_data();,同理cpu_diff(); CHECK(data_); return (const Dtype*)data_->cpu_data(); } template <typename Dtype> void Blob<Dtype>::Updata(){ //data = data-diff;須要判斷cpu OR gpu switch (data_->head()) { case SyncedMemory::HEAD_AT_CPU: caffe_axpy<Dtype>(count_,Dtype(-1), static_cast<const<Dtype*>(diff_->cpu_data()), static_cast<Dtype*>(data_->mutable_cpu_data())); } case SyncedMemory::HEAD_AT_GPU://在gpu或者CPU/GPU已經同步 case SyncedMemory::SYNCED: #ifndef CPU_ONLY caffe_gpu_axpy<Dtype>(count_.Dtype(-1), static_cast<const<Dtype*>(diff_->gpu_data()), static_cast<Dtype*>(data_->mutable_gpu_data())) } template <typename Dtype> //從source 拷貝數據,copy_diff控制是拷貝diff仍是data void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) { if (source.count() != count_ || source.shape() != shape_) { if (reshape) { ReshapeLike(source); } } switch (Caffe::mode()) { case Caffe::GPU: if (copy_diff) { //copy diff caffe_copy(count_, source.gpu_diff(), static_cast<Dtype*>(diff_->mutable_gpu_data())); } else { caffe_copy(count_, source.gpu_data(), static_cast<Dtype*>(data_->mutable_gpu_data())); } break; case Caffe::CPU: if (copy_diff) { caffe_copy(count_, source.cpu_diff(), static_cast<Dtype*>(diff_->mutable_cpu_data())); } else { caffe_copy(count_, source.cpu_data(), static_cast<Dtype*>(data_->mutable_cpu_data())); } break; default: LOG(FATAL) << "Unknown caffe mode."; } } template <typename Dtype> void Blob<Dtype>::ToProto(BlobProto* proto,bool write_diff){ proto->clear_shape(); for (size_t i = 0; i < shaoe_.size(); i++) { proto->mutable_shape()->add_dim(shape_[i]); } proto->clear_data(); proto->clear_diff(); const Dtype* data_vec = cpu_data(); for (size_t i = 0; i < count_; i++) { proto->add_data(data_vec[i]);//data寫入proto } if (write_diff) { const Dtype* diff_vec = cpu_diff(); for (size_t i = 0; i < count_; i++) { proto->add_diff(diff_vec[i]);//diff寫入proto } } }
/*Blob做爲一個最基礎的類,其中構造函數開闢一個內存空間來存儲數據,Reshape 函數在Layer中的reshape或者forward操做中來調整top的輸出維度。同時在改變Blob 大小時, 內存將會被從新分配若是內存大小不夠了,而且額外的內存將不會被釋放。 對input的blob進行reshape, 若立馬調用Net::Backward是會出錯的,由於reshape 以後,要麼Net::forward或者Net::Reshape就會被調用來將新的input shape傳播 到高層 */