求從1~n遞增序列中取和爲定製的組合

方法一:遞歸code

從1~n中,取數,使其和爲sum。遞歸

list<int> list1;
void SumOfkNum( int sum, int n){
	
	if( n<=0 || sum<=0) return;
	
	if( sum==n){
		list1.reverse(); //output from min_value
		for( list<int>::iterator iter = list1.begin(); iter!=list1.end(); iter++)
			cout<<*iter<<"+";
		cout<<n<<endl;
		list1.reverse(); //recover 
	}
	
	list1.push_front( n);
	SumOfkNum( sum-n, n-1); 
	list1.pop_front( n);
	SumOfkNum( sum, n-1);
}

 

方法二:回溯it

t = Σ(1,...,k-1)WiXi, r = Σ(k,...,n)Wiclass

  • 若  t+Wk+W(k+1) <= M,則 Xk=true,遞歸左兒子(X1,X2,...,X(k-1), 1),不然剪枝
  • 若 t+r-Wk >= M 且 t+W(k+1) <= M, 則置 Xk=false,遞歸右兒子(X1,...,X(k-1), 0),不然剪枝​​​​​​​

W={ 1, 2, ..., n}, 因此 Wk=k。t爲已求和,Wi表示第i件物品的價值, Xi表示添加第 i件物品的添加數量。咱們這裏由於每一個數只能取一次,因此 Xi 都爲 true或 false。方法

void SumOfkNum( int t, int k, int r, int &m, bool &flag, bool *x){
	x[k]=true; //輸入t和r,嘗試Wk
	if( t+k==M){ //若找到一個和爲m,則設置解向量的標誌位,輸出解
		flag = true;
		for( int i=1; i<=k; ++i)
			if( x[i] == true)
				printf("%d ",i);
			
		printf("\n");
	}else{ //若第k+1個數知足條件,則遞歸左子樹
		if( t+k+(k+1) <=m )
			SumOfkNum( t+k, k+1, r-k, m, flag, x);
		
		//若不選第k個數,選第k+1個數知足條件,則遞歸右子樹
		if( (t+r-k >=m) && (t+(k+1)<=m)){
			x[k] = false;
			SumOfkNum( t, k+1, r-k, m, flag, x);
		}
	}
}

void search( int &n, int &m){
	//初始化解空間
	bool *x=(bool*)malloc(sizeof(bool)*(n+1));
	memset( x, false, sizeof(bool)*(n+1));
	int sum = (n+1)*n/2;
	
	if( 1>m || sum<m){ //預先排除無解狀況
		printf("not found\n");
		return;
	}
	
	bool f = false;
	SumOfkNum( 0, 1, sum, m, f, x);
	if( !f)
		printf("not found\n");
	free( x);
}
相關文章
相關標籤/搜索