tensorflow 模型浮點數計算量和參數量估計

TensorFlow 模型浮點數計算量和參數量統計
2018-08-28python

本博文整理了如何對一個 TensorFlow 模型的浮點數計算量(FLOPs)和參數量進行統計。
stats_graph.pysession

import tensorflow as tf
def stats_graph(graph):
    flops = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.float_operation())
    params = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.trainable_variables_parameter())
    print('FLOPs: {};    Trainable params: {}'.format(flops.total_float_ops, params.total_parameters))

利用高斯分佈對變量進行初始化會耗費必定的 FLOPdom

C[25,9]=A[25,16]B[16,9] FLOPs=(16+15)×(25×9)=6975FLOPs(inTFstyle)=(16+16)×(25×9)=7200total_parameters=25×16+16×9=544ui

with tf.Graph().as_default() as graph:
    A = tf.get_variable(initializer=tf.random_normal_initializer(dtype=tf.float32), shape=(25, 16), name='A')
    B = tf.get_variable(initializer=tf.random_normal_initializer(dtype=tf.float32), shape=(16, 9), name='B')
    C = tf.matmul(A, B, name='ouput')
    
    stats_graph(graph)

輸出爲:
FLOPs: 8288; Trainable params: 544code

利用常量初始化器對變量進行初始化不會耗費 FLOPorm

with tf.Graph().as_default() as graph:
    A = tf.get_variable(initializer=tf.constant_initializer(value=1, dtype=tf.float32), shape=(25, 16), name='A')
    B = tf.get_variable(initializer=tf.zeros_initializer(dtype=tf.float32), shape=(16, 9), name='B')
    C = tf.matmul(A, B, name='ouput')
    
    stats_graph(graph)

輸出爲:
FLOPs: 7200; Trainable params: 544部署

Frozen graphget

一般咱們對耗費在初始化上的 FLOPs 並不感興趣,由於它是發生在訓練過程以前且是一次性的,咱們感興趣的是模型部署以後在生產環境下的 FLOPs。咱們能夠經過 Freeze 計算圖的方式獲得除去初始化 FLOPs 的、模型部署後推斷過程當中耗費的 FLOPs。input

from tensorflow.python.framework import graph_util
def load_pb(pb):
    with tf.gfile.GFile(pb, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    with tf.Graph().as_default() as graph:
        tf.import_graph_def(graph_def, name='')
        return graph
with tf.Graph().as_default() as graph:
    # ***** (1) Create Graph *****
    A = tf.Variable(initial_value=tf.random_normal([25, 16]))
    B = tf.Variable(initial_value=tf.random_normal([16, 9]))
    C = tf.matmul(A, B, name='output')
    
    print('stats before freezing')
    stats_graph(graph)
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        # ***** (2) freeze graph *****
        output_graph = graph_util.convert_variables_to_constants(sess, graph.as_graph_def(), ['output'])
        with tf.gfile.GFile('graph.pb', "wb") as f:
            f.write(output_graph.SerializeToString())
# ***** (3) Load frozen graph *****
graph = load_pb('./graph.pb')
print('stats after freezing')
stats_graph(graph)

輸出爲:it

stats before freezing
FLOPs: 8288; Trainable params: 544
INFO:tensorflow:Froze 2 variables.
INFO:tensorflow:Converted 2 variables to const ops.
stats after freezing
FLOPs: 7200; Trainable params: 0

與 Keras 的結合

from keras import backend as K
from keras.layers import Dense
from keras.models import Sequential
from keras.initializers import Constant
model = Sequential()
model.add(Dense(32, input_dim=4, bias_initializer=Constant(value=0), kernel_initializer=Constant(value=1)))
sess = K.get_session()
graph = sess.graph
stats_graph(graph)

輸出爲:
FLOPs: 0; Trainable params: 160
Using TensorFlow backend.
2 ops no flops stats due to incomplete shapes.
2 ops no flops stats due to incomplete shapes.
model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 32) 160
=================================================================
Total params: 160
Trainable params: 160
Non-trainable params: 0
_________________________________________________________________

DL

About

This is Robert Lexis (FengCun Li). To see the world, things dangerous to come to, to see behind walls, to draw closer, to find each other and to feel. That is the purpose of LIFE.
Recent Posts

Static variable in inline
Iterator invalidation rul
Emplace back
Perfect forward
相關文章
相關標籤/搜索