題目大意:c++
給定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) = 1][(j, k) = 1][(i, k) = 1]\)算法
$a, b, c \leq 5*10^4 $spa
首先莫比烏斯反演code
$Ans = \sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) = 1][(j, k) = 1][(i, k) = 1] $ci
\(= \sum \limits_{i} \sum \limits_{j} \sum \limits_{k} \sum \limits_{x |i \;x|j} \mu(x) \sum \limits_{y|j\;y|k} \mu(y) \sum \limits_{z |i\;z|k} \mu(z)\)it
\(= \sum \limits_{x} \sum \limits_{y} \sum \limits_{z} \mu(x) \mu(y) \mu(z) \frac{A}{lcm(x, y)} \frac{B}{lcm(x, z)} \frac{C}{lcm(y, z)}\)io
那麼考慮計算這個式子class
注意到其實有效的三元組\((x, y, z)\)是十分稀少的gc
咱們考慮用一種高效的辦法來找到全部的三元組im
三元環計數是一個十分便利的算法
若是\(\mu(u), \mu(v) \neq 0, lca(u, v) \leq C\),那麼咱們連邊\((u, v)\)
怎麼連邊呢?
咱們先枚舉\(lca(u, v)\),而後枚舉\(u\),以後再枚舉\(gcd(u, v)\)判斷便可
對於有兩個數相同的狀況和三個數相同的狀況進行特判便可
複雜度不會算,反正跑的挺快的
ps:我怎麼感受dfs也能過呢?
#include <bits/stdc++.h> using namespace std; #define mp make_pair #define pii pair <int, int> #define ri register int #define rep(io, st, ed) for(ri io = st; io <= ed; io ++) #define drep(io, ed, st) for(ri io = ed; io >= st; io --) const int sid = 5e4 + 5; const int cid = 2e6 + 5; const int mod = 1e9 + 7; inline void inc(int &a, int b) { a += b; if(a >= mod) a -= mod; } inline int mul(int a, int b) { return 1ll * a * b % mod; } int a, b, c, id, ans, tot; int mu[sid], pr[sid], nop[sid]; int eu[cid], ev[cid], ew[cid], d[sid], vis[sid], vv[sid]; vector <pii> go[sid]; vector <int> fac[sid]; inline void Init() { mu[1] = 1; for (int i = 2; i <= 50000; i ++) { if (!nop[i]) { pr[++ tot] = i; mu[i] = mod - 1; } for (int j = 1; j <= tot; j ++) { int p = i * pr[j]; if(p > 50000) break; nop[p] = 1; if(i % pr[j] == 0) break; if(mu[i]) mu[p] = mod - mu[i]; } } for (ri i = 1; i <= tot; i ++) for (ri j = pr[i]; j <= 50000; j += pr[i]) fac[j].push_back(pr[i]); } inline int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } inline int lcm(int a, int b) { return 1ll * a * b / gcd(a, b);} inline void calc() { if(c < a) swap(a, c); if(c < b) swap(b, c); if(b < a) swap(a, b); for (ri x = 1; x <= a; x ++) // x = y = z if(mu[x]) inc(ans, mul(mu[x], 1ll * (a / x) * (b / x) * (c / x) % mod)); for (ri L = 1; L <= c; L ++) if(mu[L]) { int v = fac[L].size(); for (ri S = 0; S <= (1 << v) - 1; S ++) { int x = 1; rep(i, 0, v - 1) if(S & (1 << i)) x *= fac[L][i]; if(x > b) continue; for (ri T = S & (S - 1); ; T = (T - 1) & S) { int D = 1; rep(j, 0, v - 1) if(T & (1 << j)) D *= fac[L][j]; int y = 1ll * L * D / x; if(x > y && y <= a) { d[x] ++; d[y] ++; eu[++ id] = x; ev[id] = y; ew[id] = L; inc(ans, mul(mu[y], 1ll * (a / L) * (b / L) * (c / x) % mod)); inc(ans, mul(mu[y], 1ll * (a / x) * (b / L) * (c / L) % mod)); inc(ans, mul(mu[y], 1ll * (a / L) * (b / x) * (c / L) % mod)); inc(ans, mul(mu[x], 1ll * (a / L) * (b / L) * (c / y) % mod)); inc(ans, mul(mu[x], 1ll * (a / y) * (b / L) * (c / L) % mod)); inc(ans, mul(mu[x], 1ll * (a / L) * (b / y) * (c / L) % mod)); } if(!T) break; } } } for (ri i = 1; i <= id; i ++) { int u = eu[i], v = ev[i]; if(d[u] > d[v]) swap(u, v); go[u].push_back(mp(v, ew[i])); } for (ri x = 1; x <= b; x ++) { for (auto Y : go[x]) vis[Y.first] = x, vv[Y.first] = Y.second; for (auto Y : go[x]) for (auto Z : go[Y.first]) if(vis[Z.first] == x) { static int res = 0, cer = 0; int y = Y.first, z = Z.first, xy = Y.second, yz = Z.second, xz = vv[z]; res = 0; cer = mul(mu[x], mul(mu[y], mu[z])); inc(res, 1ll * (a / xy) * ((b / xz) * (c / yz) + (b / yz) * (c / xz)) % mod); inc(res, 1ll * (b / xy) * ((a / xz) * (c / yz) + (a / yz) * (c / xz)) % mod); inc(res, 1ll * (c / xy) * ((a / xz) * (b / yz) + (a / yz) * (b / xz)) % mod); inc(ans, mul(cer, res)); } } cout << ans << endl; } int main() { cin >> a >> b >> c; Init(); calc(); return 0; }