原文連接:wangwei.one/posts/java-…html
邏輯結構上一個挨一個的數據,在實際存儲時,並無像順序表那樣也相互緊挨着。偏偏相反,數據隨機分佈在內存中的各個位置,這種存儲結構稱爲線性表的鏈式存儲。java
因爲分散存儲,爲了可以體現出數據元素之間的邏輯關係,每一個數據元素在存儲的同時,要配備一個指針,用於指向它的直接後繼元素,即每個數據元素都指向下一個數據元素(最後一個指向NULL(空))。這種結構成爲 "單向鏈表"。node
在單向鏈表的基礎上,給各個結點額外配備一個指針變量,用於指向每一個結點的直接前趨元素。這樣的鏈表被稱爲「雙向鏈表」或者「雙鏈表」。git
當單向鏈表的尾部數據指向頭部數據時,就構成了單向循環鏈表。github
當雙向鏈表的頭部和尾部相互指向時,就構成了雙向循環鏈表。算法
單向鏈表在插入元素、刪除元素時,須要獲取前驅元素,須要從head開始遍歷,時間複雜度爲O(n)。數組
根據index查詢對應元素,也須要從head開始遍歷,時間複雜度爲O(n)。數據結構
package one.wangwei.algorithms.datastructures.list.impl;
import one.wangwei.algorithms.datastructures.list.IList;
/** * Single Linked List * * @author https://wangwei.one * @date 2018/12/25 */
public class SingleLinkedList<T> implements IList<T> {
/** * size */
private int size = 0;
/** * head node */
private Node<T> head;
/** * tail node */
private Node<T> tail;
/** * add element * * @param element * @return */
@Override
public boolean add(T element) {
return addLast(element);
}
/** * add element at index * * @param index * @param element * @return */
@Override
public boolean add(int index, T element) {
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
}
if (index == size) {
return add(element);
} else {
return addBefore(index, element);
}
}
/** * Add Last element * * @param element * @return */
private boolean addLast(T element) {
Node<T> last = tail;
Node<T> newNode = new Node<>(null, element);
tail = newNode;
// if linked list is empty
if (last == null) {
head = newNode;
} else {
last.next = newNode;
}
size++;
return true;
}
/** * add element before certain element * * @param index * @param element * @return */
private boolean addBefore(int index, T element) {
checkPositionIndex(index);
// prev node
Node<T> prev = null;
Node<T> x = head;
for (int i = 0; i < index; i++) {
prev = x;
x = x.next;
}
// current node
Node<T> current = x;
// new node
Node<T> newNode = new Node<>(current, element);
// if current node is head
if (prev == null) {
head = newNode;
} else {
prev.next = newNode;
}
size++;
return true;
}
/** * remove element * * @param element * @return */
@Override
public boolean remove(T element) {
Node<T> prev = null;
Node<T> x = head;
if (element == null) {
while (x != null && x.element != null) {
prev = x;
x = x.next;
}
} else {
while (x != null && !x.element.equals(element)) {
prev = x;
x = x.next;
}
}
// if this linked is null OR don't find element
if (x == null) {
return false;
}
Node<T> next = x.next;
// if delete node is head
if (prev == null) {
head = next;
} else {
prev.next = next;
}
// if delete node is tail
if (next == null) {
tail = prev;
}
// for GC
x.element = null;
x = null;
size--;
return true;
}
/** * remove element by index * * @param index * @return */
@Override
public T remove(int index) {
checkPositionIndex(index);
Node<T> prev = null;
Node<T> x = head;
for (int i = 0; i < index; i++) {
prev = x;
x = x.next;
}
// if linked is empty
if (x == null) {
return null;
}
Node<T> next = x.next;
// if delete node is head
if (prev == null) {
head = next;
} else {
prev.next = next;
}
// if delete node is tail
if (next == null) {
tail = prev;
}
size--;
return x.element;
}
/** * set element by index * * @param index * @param element * @return old element */
@Override
public T set(int index, T element) {
checkPositionIndex(index);
Node<T> node = node(index);
T oldElement = node.element;
node.element = element;
return oldElement;
}
/** * get element by index * * @param index * @return */
@Override
public T get(int index) {
Node<T> node = node(index);
return node == null ? null : node.element;
}
/** * get element by index * * @param index * @return */
private Node<T> node(int index) {
checkPositionIndex(index);
Node<T> x = head;
for (int i = 0; i < index; i++) {
x = x.next;
}
return x;
}
/** * check index * * @param index */
private void checkPositionIndex(int index) {
if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
}
}
/** * clear list */
@Override
public void clear() {
for (Node<T> x = head; x != null; ) {
Node<T> next = x.next;
x.element = null;
x.next = null;
x = next;
}
head = tail = null;
size = 0;
}
/** * contain certain element * * @param element */
@Override
public boolean contains(T element) {
if (element == null) {
for (Node<T> x = head; x != null; x = x.next) {
if (x.element == null) {
return true;
}
}
} else {
for (Node<T> x = head; x != null; x = x.next) {
if (x.element.equals(element)) {
return true;
}
}
}
return false;
}
/** * get list size * * @return */
@Override
public int size() {
return size;
}
/** * Linked List Node * * @param <T> */
private class Node<T> {
private Node<T> next;
private T element;
public Node(Node<T> next, T element) {
this.next = next;
this.element = element;
}
}
}
複製代碼
源代碼ide
相比於單向鏈表,雙向鏈表多了一個前驅指針,在查找前驅節點時,時間複雜度下降爲了O(1)。post
經過index查詢,刪除某個node節點,時間複雜度都降爲了O(1)。代碼以下:
package one.wangwei.algorithms.datastructures.list.impl;
import one.wangwei.algorithms.datastructures.list.IList;
/** * Doubly Linked List * * @param <T> * @author https://wangwei.one * @date 2018/04/28 */
public class DoublyLinkedList<T> implements IList<T> {
/** * size */
private int size = 0;
/** * head element */
private Node<T> head = null;
/** * tail element */
private Node<T> tail = null;
/** * add element * * @param element * @return */
@Override
public boolean add(T element) {
return addLast(element);
}
/** * add element at index * * @param index * @param element * @return */
@Override
public boolean add(int index, T element) {
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
}
if (index == size) {
return add(element);
} else {
return addBefore(element, node(index));
}
}
/** * Add Last element * * @param element * @return */
private boolean addLast(T element) {
final Node<T> last = tail;
Node<T> newNode = new Node<>(last, element, null);
tail = newNode;
if (last == null) {
head = newNode;
} else {
last.next = newNode;
}
size++;
return true;
}
/** * add element before certain element * * @param element * @param target * @return */
private boolean addBefore(T element, Node<T> target) {
Node<T> prev = target.prev;
Node<T> newNode = new Node<>(prev, element, target);
target.prev = newNode;
if (prev == null) {
head = newNode;
} else {
prev.next = newNode;
}
size++;
return true;
}
/** * remove node by element * * @param element * @return */
@Override
public boolean remove(T element) {
if (element == null) {
for (Node<T> x = head; x != null; x = x.next) {
if (x.element == null) {
unlink(x);
return true;
}
}
} else {
for (Node<T> x = head; x != null; x = x.next) {
if (element.equals(x.element)) {
unlink(x);
return true;
}
}
}
return false;
}
/** * remove node by index * * @param index * @return */
@Override
public T remove(int index) {
return unlink(node(index));
}
/** * get element by index * * @param index * @return */
private Node<T> node(int index) {
checkPositionIndex(index);
if (index < (size >> 1)) {
Node<T> x = head;
for (int i = 0; i < index; i++) {
x = x.next;
}
return x;
} else {
Node<T> x = tail;
for (int i = size - 1; i > index; i--) {
x = x.prev;
}
return x;
}
}
/** * unlink node * * @param node */
private T unlink(Node<T> node) {
final T element = node.element;
final Node<T> prev = node.prev;
final Node<T> next = node.next;
// if unlink is head
if (prev == null) {
head = next;
} else {
prev.next = next;
// clear prev
node.prev = null;
}
// if unlink is tail
if (next == null) {
tail = prev;
} else {
next.prev = prev;
node.next = null;
}
node.element = null;
size--;
return element;
}
private void checkPositionIndex(int index) {
if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
}
}
/** * set element by index * * @param index * @param element * @return */
@Override
public T set(int index, T element) {
checkPositionIndex(index);
Node<T> oldNode = node(index);
T oldElement = oldNode.element;
oldNode.element = element;
return oldElement;
}
/** * get element by index * * @param index * @return */
@Override
public T get(int index) {
Node<T> node = node(index);
return node == null ? null : node.element;
}
/** * clear list */
@Override
public void clear() {
for (Node<T> x = head; x != null; ) {
Node<T> next = x.next;
x.element = null;
x.next = null;
x.prev = null;
x = next;
}
head = tail = null;
size = 0;
}
/** * contain certain element * * @param element */
@Override
public boolean contains(T element) {
if (element == null) {
for (Node<T> x = head; x != null; x = x.next) {
if (x.element == null) {
return true;
}
}
} else {
for (Node<T> x = head; x != null; x = x.next) {
if (element.equals(x.element)) {
return true;
}
}
}
return false;
}
/** * get list size * * @return */
@Override
public int size() {
return size;
}
/** * node * * @param <T> */
private class Node<T> {
private T element;
private Node<T> prev;
private Node<T> next;
public Node(Node<T> prev, T element, Node<T> next) {
this.element = element;
this.prev = prev;
this.next = next;
}
}
}
複製代碼
與單向鏈表同樣,在尋找前驅節點時,須要遍歷整個鏈表,時間複雜度爲O(n).
在第一次添加元素時,特別注意,head與tail爲同一節點,而且須要自指向。
package one.wangwei.algorithms.datastructures.list.impl;
import one.wangwei.algorithms.datastructures.list.IList;
/** * Singly Circular Linked List * * @param <T> * @author https://wangwei.one * @date 2018/05/03 */
public class SinglyCircularLinkedList<T> implements IList<T> {
/** * size */
private int size = 0;
/** * head node */
private Node<T> head = null;
/** * tail node */
private Node<T> tail = null;
/** * add element * * @param element * @return */
@Override
public boolean add(T element) {
return addLast(element);
}
/** * add element at index * * @param index * @param element * @return */
@Override
public boolean add(int index, T element) {
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
}
if (index == size) {
return add(element);
} else {
return addBefore(index, element);
}
}
/** * Add Last element * * @param element * @return */
private boolean addLast(T element) {
final Node<T> last = tail;
Node<T> newElement = new Node<>(element, head);
tail = newElement;
if (last == null) {
head = newElement;
// we need linked itself when add an element first
tail.next = head;
} else {
last.next = newElement;
}
size++;
return true;
}
/** * add element before certain element * * @param element * @param element * @return */
private boolean addBefore(int index, T element) {
checkPositionIndex(index);
// prev node, start with tail
Node<T> prev = tail;
Node<T> x = head;
for (int i = 0; i < index; i++) {
prev = x;
x = x.next;
}
// current node
Node<T> current = x;
// new node
Node<T> newNode = new Node<>(element, current);
if (index == 0) {
head = newNode;
}
prev.next = newNode;
size++;
return true;
}
/** * remove node by element * * @param element * @return */
@Override
public boolean remove(T element) {
// start with tail
Node<T> prev = tail;
// start with head
Node<T> x = head;
// start with index -1
int prevIndex = -1;
for (int i = 0; i < size; i++) {
if (element == null && x.element == null) {
break;
}
if (element != null && element.equals(x.element)) {
break;
}
prev = x;
x = x.next;
prevIndex = i;
}
// if this linked list is empty
if (x == null) {
return false;
}
// if don't match element
if (prevIndex == size - 1) {
return false;
}
Node<T> next = x.next;
// if delete node is head
if (prevIndex == -1) {
head = next;
}
// if delete node is tail
if (prevIndex == size - 2) {
tail = prev;
}
prev.next = next;
size--;
if (size == 0) {
head = tail = null;
}
// for GC
x = null;
return true;
}
/** * remove element by index * * @param index * @return */
@Override
public T remove(int index) {
checkPositionIndex(index);
Node<T> prev = tail;
Node<T> x = head;
for (int i = 0; i < index; i++) {
prev = x;
x = x.next;
}
// if linked is empty
if (x == null) {
return null;
}
Node<T> next = x.next;
// if delete node is head
if (index == 0) {
head = next;
}
// if delete node is tail
if (index == size - 1) {
tail = prev;
}
prev.next = next;
size--;
if (size == 0) {
head = tail = null;
}
return x.element;
}
/** * get element by index * * @param index * @return */
private Node<T> node(int index) {
checkPositionIndex(index);
Node<T> x = head;
for (int i = 0; i < index; i++) {
x = x.next;
}
return x;
}
private void checkPositionIndex(int index) {
if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
}
}
/** * set element by index * * @param index * @param element * @return */
@Override
public T set(int index, T element) {
checkPositionIndex(index);
Node<T> oldNode = node(index);
T oldElement = oldNode.element;
oldNode.element = element;
return oldElement;
}
/** * get element by index * * @param index * @return */
@Override
public T get(int index) {
return node(index).element;
}
/** * clear list element */
@Override
public void clear() {
for (Node<T> x = head; x != null; ) {
Node<T> next = x.next;
x.element = null;
x.next = null;
x = next;
}
head = tail = null;
size = 0;
}
/** * contain certain element * * @param element */
@Override
public boolean contains(T element) {
if (head == null) {
return false;
}
Node<T> x = head;
for (int i = 0; i < size; i++) {
if (element == null && x.element == null) {
return true;
}
if (element != null && element.equals(x.element)) {
return true;
}
x = x.next;
}
return false;
}
/** * get list size * * @return */
@Override
public int size() {
return size;
}
/** * Node * * @param <T> */
private class Node<T> {
private T element;
private Node<T> next;
public Node(T element, Node<T> next) {
this.element = element;
this.next = next;
}
}
}
複製代碼
雙向循環鏈表相比單向循環鏈表,下降了查找前驅節點的複雜度,時間複雜度爲O(1).
一樣第一次添加元素時,head與tail爲同一元素,須要自指向。
package one.wangwei.algorithms.datastructures.list.impl;
import one.wangwei.algorithms.datastructures.list.IList;
/** * Doubly circular linked list * * @author https://wangwei.one * @date 2018/12/21 */
public class DoublyCircularLinkedList<T> implements IList<T> {
/** * size */
private int size;
/** * head node */
private Node<T> head;
/** * tail node */
private Node<T> tail;
/** * add element * * @param element * @return */
@Override
public boolean add(T element) {
return addLast(element);
}
/** * add element at index * * @param index * @param element * @return */
@Override
public boolean add(int index, T element) {
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
}
if (index == size) {
return add(element);
} else {
return addBefore(index, element);
}
}
/** * Add last element * * @param element * @return */
private boolean addLast(T element) {
Node<T> last = tail;
Node<T> newNode = new Node<>(element, last, head);
tail = newNode;
// add element at first
if (last == null) {
head = newNode;
tail.next = head;
} else {
last.next = newNode;
}
head.prev = tail;
size++;
return true;
}
/** * add element before certain element * * @param index * @param element * @return */
private boolean addBefore(int index, T element) {
Node<T> target = node(index);
Node<T> prev = target.prev;
Node<T> newNode = new Node<>(element, prev, target);
prev.next = newNode;
target.prev = newNode;
if (index == 0) {
head = newNode;
}
size++;
return true;
}
/** * remove element * * @param element * @return */
@Override
public boolean remove(T element) {
// start with head
Node<T> x = head;
// start with index -1
int prevIndex = -1;
for (int i = 0; i < size; i++) {
if (element == null && x.element == null) {
break;
}
if (element != null && element.equals(x.element)) {
break;
}
x = x.next;
prevIndex = i;
}
// if this linked list is empty
if (x == null) {
return false;
}
// if don't match element
if (prevIndex == size - 1) {
return false;
}
Node<T> prev = x.prev;
Node<T> next = x.next;
// if delete node is head
if (prevIndex == -1) {
head = next;
}
// if delete node is tail
if (prevIndex == size - 2) {
tail = prev;
}
prev.next = next;
next.prev = prev;
size--;
if (size == 0) {
head = tail = null;
}
// for GC
x = null;
return true;
}
/** * remove element by index * * @param index * @return */
@Override
public T remove(int index) {
checkPositionIndex(index);
Node<T> x = head;
for (int i = 0; i < index; i++) {
x = x.next;
}
// if linked is empty
if (x == null) {
return null;
}
Node<T> prev = x.prev;
Node<T> next = x.next;
// if delete node is head
if (index == 0) {
head = next;
}
// if delete node is tail
if (index == size - 1) {
tail = prev;
}
prev.next = next;
next.prev = prev;
size--;
if (size == 0) {
head = tail = null;
}
return x.element;
}
private void checkPositionIndex(int index) {
if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
}
}
/** * set element by index * * @param index * @param element * @return old element */
@Override
public T set(int index, T element) {
Node<T> oldNode = node(index);
T oldElement = oldNode.element;
oldNode.element = element;
return oldElement;
}
/** * get element by index * * @param index * @return */
@Override
public T get(int index) {
return node(index).element;
}
/** * get element by index * * @param index * @return */
private Node<T> node(int index) {
checkPositionIndex(index);
if (index < (size >> 1)) {
Node<T> x = head;
for (int i = 0; i < index; i++) {
x = x.next;
}
return x;
} else {
Node<T> x = tail;
for (int i = size - 1; i > index; i--) {
x = x.prev;
}
return x;
}
}
/** * clear list */
@Override
public void clear() {
for (Node<T> x = head; x != null; ) {
Node<T> next = x.next;
x.element = null;
x.next = null;
x = next;
}
head = tail = null;
size = 0;
}
/** * contain certain element * * @param element * @return */
@Override
public boolean contains(T element) {
if (head == null) {
return false;
}
Node<T> x = head;
for (int i = 0; i < size; i++) {
if (element == null && x.element == null) {
return true;
}
if (element != null && element.equals(x.element)) {
return true;
}
x = x.next;
}
return false;
}
/** * get list size * * @return */
@Override
public int size() {
return size;
}
/** * Node * * @param <T> */
private class Node<T> {
private T element;
private Node<T> prev;
private Node<T> next;
public Node(T element, Node<T> prev, Node<T> next) {
this.element = element;
this.prev = prev;
this.next = next;
}
}
}
複製代碼
ArrayList | LinkedList | |
---|---|---|
插入& 刪除 |
O(n) | O(1) |
隨機訪問 | O(1) | O(n) |
優勢 | 連續的內存空間,能夠藉助CPU的預取機制 | 內存不連續,自然支持動態擴容 |
缺點 | 沒法存儲大數據,數組擴容耗性能 | 頻繁地插入刪除操做,會致使內存碎片的增長,致使頻繁的GC |