原文連接: https://wangwei.one/posts/jav...
邏輯結構上一個挨一個的數據,在實際存儲時,並無像順序表那樣也相互緊挨着。偏偏相反,數據隨機分佈在內存中的各個位置,這種存儲結構稱爲線性表的鏈式存儲。html
<!--more-->java
因爲分散存儲,爲了可以體現出數據元素之間的邏輯關係,每一個數據元素在存儲的同時,要配備一個指針,用於指向它的直接後繼元素,即每個數據元素都指向下一個數據元素(最後一個指向NULL(空))。這種結構成爲 "單向鏈表"。node
在單向鏈表的基礎上,給各個結點額外配備一個指針變量,用於指向每一個結點的直接前趨元素。這樣的鏈表被稱爲「雙向鏈表」或者「雙鏈表」。git
當單向鏈表的尾部數據指向頭部數據時,就構成了單向循環鏈表。github
當雙向鏈表的頭部和尾部相互指向時,就構成了雙向循環鏈表。數組
單向鏈表在插入元素、刪除元素時,須要獲取前驅元素,須要從head開始遍歷,時間複雜度爲O(n)。ide
根據index查詢對應元素,也須要從head開始遍歷,時間複雜度爲O(n)。post
package one.wangwei.algorithms.datastructures.list.impl; import one.wangwei.algorithms.datastructures.list.IList; /** * Single Linked List * * @author https://wangwei.one * @date 2018/12/25 */ public class SingleLinkedList<T> implements IList<T> { /** * size */ private int size = 0; /** * head node */ private Node<T> head; /** * tail node */ private Node<T> tail; /** * add element * * @param element * @return */ @Override public boolean add(T element) { return addLast(element); } /** * add element at index * * @param index * @param element * @return */ @Override public boolean add(int index, T element) { if (index < 0 || index > size) { throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size); } if (index == size) { return add(element); } else { return addBefore(index, element); } } /** * Add Last element * * @param element * @return */ private boolean addLast(T element) { Node<T> last = tail; Node<T> newNode = new Node<>(null, element); tail = newNode; // if linked list is empty if (last == null) { head = newNode; } else { last.next = newNode; } size++; return true; } /** * add element before certain element * * @param index * @param element * @return */ private boolean addBefore(int index, T element) { checkPositionIndex(index); // prev node Node<T> prev = null; Node<T> x = head; for (int i = 0; i < index; i++) { prev = x; x = x.next; } // current node Node<T> current = x; // new node Node<T> newNode = new Node<>(current, element); // if current node is head if (prev == null) { head = newNode; } else { prev.next = newNode; } size++; return true; } /** * remove element * * @param element * @return */ @Override public boolean remove(T element) { Node<T> prev = null; Node<T> x = head; if (element == null) { while (x != null && x.element != null) { prev = x; x = x.next; } } else { while (x != null && !x.element.equals(element)) { prev = x; x = x.next; } } // if this linked is null OR don't find element if (x == null) { return false; } Node<T> next = x.next; // if delete node is head if (prev == null) { head = next; } else { prev.next = next; } // if delete node is tail if (next == null) { tail = prev; } // for GC x.element = null; x = null; size--; return true; } /** * remove element by index * * @param index * @return */ @Override public T remove(int index) { checkPositionIndex(index); Node<T> prev = null; Node<T> x = head; for (int i = 0; i < index; i++) { prev = x; x = x.next; } // if linked is empty if (x == null) { return null; } Node<T> next = x.next; // if delete node is head if (prev == null) { head = next; } else { prev.next = next; } // if delete node is tail if (next == null) { tail = prev; } size--; return x.element; } /** * set element by index * * @param index * @param element * @return old element */ @Override public T set(int index, T element) { checkPositionIndex(index); Node<T> node = node(index); T oldElement = node.element; node.element = element; return oldElement; } /** * get element by index * * @param index * @return */ @Override public T get(int index) { Node<T> node = node(index); return node == null ? null : node.element; } /** * get element by index * * @param index * @return */ private Node<T> node(int index) { checkPositionIndex(index); Node<T> x = head; for (int i = 0; i < index; i++) { x = x.next; } return x; } /** * check index * * @param index */ private void checkPositionIndex(int index) { if (index < 0 || index >= size) { throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size); } } /** * clear list */ @Override public void clear() { for (Node<T> x = head; x != null; ) { Node<T> next = x.next; x.element = null; x.next = null; x = next; } head = tail = null; size = 0; } /** * contain certain element * * @param element */ @Override public boolean contains(T element) { if (element == null) { for (Node<T> x = head; x != null; x = x.next) { if (x.element == null) { return true; } } } else { for (Node<T> x = head; x != null; x = x.next) { if (x.element.equals(element)) { return true; } } } return false; } /** * get list size * * @return */ @Override public int size() { return size; } /** * Linked List Node * * @param <T> */ private class Node<T> { private Node<T> next; private T element; public Node(Node<T> next, T element) { this.next = next; this.element = element; } } }
源代碼
相比於單向鏈表,雙向鏈表多了一個前驅指針,在查找前驅節點時,時間複雜度下降爲了O(1)。性能
經過index查詢,刪除某個node節點,時間複雜度都降爲了O(1)。代碼以下:大數據
package one.wangwei.algorithms.datastructures.list.impl; import one.wangwei.algorithms.datastructures.list.IList; /** * Doubly Linked List * * @param <T> * @author https://wangwei.one * @date 2018/04/28 */ public class DoublyLinkedList<T> implements IList<T> { /** * size */ private int size = 0; /** * head element */ private Node<T> head = null; /** * tail element */ private Node<T> tail = null; /** * add element * * @param element * @return */ @Override public boolean add(T element) { return addLast(element); } /** * add element at index * * @param index * @param element * @return */ @Override public boolean add(int index, T element) { if (index < 0 || index > size) { throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size); } if (index == size) { return add(element); } else { return addBefore(element, node(index)); } } /** * Add Last element * * @param element * @return */ private boolean addLast(T element) { final Node<T> last = tail; Node<T> newNode = new Node<>(last, element, null); tail = newNode; if (last == null) { head = newNode; } else { last.next = newNode; } size++; return true; } /** * add element before certain element * * @param element * @param target * @return */ private boolean addBefore(T element, Node<T> target) { Node<T> prev = target.prev; Node<T> newNode = new Node<>(prev, element, target); target.prev = newNode; if (prev == null) { head = newNode; } else { prev.next = newNode; } size++; return true; } /** * remove node by element * * @param element * @return */ @Override public boolean remove(T element) { if (element == null) { for (Node<T> x = head; x != null; x = x.next) { if (x.element == null) { unlink(x); return true; } } } else { for (Node<T> x = head; x != null; x = x.next) { if (element.equals(x.element)) { unlink(x); return true; } } } return false; } /** * remove node by index * * @param index * @return */ @Override public T remove(int index) { return unlink(node(index)); } /** * get element by index * * @param index * @return */ private Node<T> node(int index) { checkPositionIndex(index); if (index < (size >> 1)) { Node<T> x = head; for (int i = 0; i < index; i++) { x = x.next; } return x; } else { Node<T> x = tail; for (int i = size - 1; i > index; i--) { x = x.prev; } return x; } } /** * unlink node * * @param node */ private T unlink(Node<T> node) { final T element = node.element; final Node<T> prev = node.prev; final Node<T> next = node.next; // if unlink is head if (prev == null) { head = next; } else { prev.next = next; // clear prev node.prev = null; } // if unlink is tail if (next == null) { tail = prev; } else { next.prev = prev; node.next = null; } node.element = null; size--; return element; } private void checkPositionIndex(int index) { if (index < 0 || index >= size) { throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size); } } /** * set element by index * * @param index * @param element * @return */ @Override public T set(int index, T element) { checkPositionIndex(index); Node<T> oldNode = node(index); T oldElement = oldNode.element; oldNode.element = element; return oldElement; } /** * get element by index * * @param index * @return */ @Override public T get(int index) { Node<T> node = node(index); return node == null ? null : node.element; } /** * clear list */ @Override public void clear() { for (Node<T> x = head; x != null; ) { Node<T> next = x.next; x.element = null; x.next = null; x.prev = null; x = next; } head = tail = null; size = 0; } /** * contain certain element * * @param element */ @Override public boolean contains(T element) { if (element == null) { for (Node<T> x = head; x != null; x = x.next) { if (x.element == null) { return true; } } } else { for (Node<T> x = head; x != null; x = x.next) { if (element.equals(x.element)) { return true; } } } return false; } /** * get list size * * @return */ @Override public int size() { return size; } /** * node * * @param <T> */ private class Node<T> { private T element; private Node<T> prev; private Node<T> next; public Node(Node<T> prev, T element, Node<T> next) { this.element = element; this.prev = prev; this.next = next; } } }
源代碼
與單向鏈表同樣,在尋找前驅節點時,須要遍歷整個鏈表,時間複雜度爲O(n).
在第一次添加元素時,特別注意,head與tail爲同一節點,而且須要自指向。
package one.wangwei.algorithms.datastructures.list.impl; import one.wangwei.algorithms.datastructures.list.IList; /** * Singly Circular Linked List * * @param <T> * @author https://wangwei.one * @date 2018/05/03 */ public class SinglyCircularLinkedList<T> implements IList<T> { /** * size */ private int size = 0; /** * head node */ private Node<T> head = null; /** * tail node */ private Node<T> tail = null; /** * add element * * @param element * @return */ @Override public boolean add(T element) { return addLast(element); } /** * add element at index * * @param index * @param element * @return */ @Override public boolean add(int index, T element) { if (index < 0 || index > size) { throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size); } if (index == size) { return add(element); } else { return addBefore(index, element); } } /** * Add Last element * * @param element * @return */ private boolean addLast(T element) { final Node<T> last = tail; Node<T> newElement = new Node<>(element, head); tail = newElement; if (last == null) { head = newElement; // we need linked itself when add an element first tail.next = head; } else { last.next = newElement; } size++; return true; } /** * add element before certain element * * @param element * @param element * @return */ private boolean addBefore(int index, T element) { checkPositionIndex(index); // prev node, start with tail Node<T> prev = tail; Node<T> x = head; for (int i = 0; i < index; i++) { prev = x; x = x.next; } // current node Node<T> current = x; // new node Node<T> newNode = new Node<>(element, current); if (index == 0) { head = newNode; } prev.next = newNode; size++; return true; } /** * remove node by element * * @param element * @return */ @Override public boolean remove(T element) { // start with tail Node<T> prev = tail; // start with head Node<T> x = head; // start with index -1 int prevIndex = -1; for (int i = 0; i < size; i++) { if (element == null && x.element == null) { break; } if (element != null && element.equals(x.element)) { break; } prev = x; x = x.next; prevIndex = i; } // if this linked list is empty if (x == null) { return false; } // if don't match element if (prevIndex == size - 1) { return false; } Node<T> next = x.next; // if delete node is head if (prevIndex == -1) { head = next; } // if delete node is tail if (prevIndex == size - 2) { tail = prev; } prev.next = next; size--; if (size == 0) { head = tail = null; } // for GC x = null; return true; } /** * remove element by index * * @param index * @return */ @Override public T remove(int index) { checkPositionIndex(index); Node<T> prev = tail; Node<T> x = head; for (int i = 0; i < index; i++) { prev = x; x = x.next; } // if linked is empty if (x == null) { return null; } Node<T> next = x.next; // if delete node is head if (index == 0) { head = next; } // if delete node is tail if (index == size - 1) { tail = prev; } prev.next = next; size--; if (size == 0) { head = tail = null; } return x.element; } /** * get element by index * * @param index * @return */ private Node<T> node(int index) { checkPositionIndex(index); Node<T> x = head; for (int i = 0; i < index; i++) { x = x.next; } return x; } private void checkPositionIndex(int index) { if (index < 0 || index >= size) { throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size); } } /** * set element by index * * @param index * @param element * @return */ @Override public T set(int index, T element) { checkPositionIndex(index); Node<T> oldNode = node(index); T oldElement = oldNode.element; oldNode.element = element; return oldElement; } /** * get element by index * * @param index * @return */ @Override public T get(int index) { return node(index).element; } /** * clear list element */ @Override public void clear() { for (Node<T> x = head; x != null; ) { Node<T> next = x.next; x.element = null; x.next = null; x = next; } head = tail = null; size = 0; } /** * contain certain element * * @param element */ @Override public boolean contains(T element) { if (head == null) { return false; } Node<T> x = head; for (int i = 0; i < size; i++) { if (element == null && x.element == null) { return true; } if (element != null && element.equals(x.element)) { return true; } x = x.next; } return false; } /** * get list size * * @return */ @Override public int size() { return size; } /** * Node * * @param <T> */ private class Node<T> { private T element; private Node<T> next; public Node(T element, Node<T> next) { this.element = element; this.next = next; } } }
源代碼
雙向循環鏈表相比單向循環鏈表,下降了查找前驅節點的複雜度,時間複雜度爲O(1).
一樣第一次添加元素時,head與tail爲同一元素,須要自指向。
package one.wangwei.algorithms.datastructures.list.impl; import one.wangwei.algorithms.datastructures.list.IList; /** * Doubly circular linked list * * @author https://wangwei.one * @date 2018/12/21 */ public class DoublyCircularLinkedList<T> implements IList<T> { /** * size */ private int size; /** * head node */ private Node<T> head; /** * tail node */ private Node<T> tail; /** * add element * * @param element * @return */ @Override public boolean add(T element) { return addLast(element); } /** * add element at index * * @param index * @param element * @return */ @Override public boolean add(int index, T element) { if (index < 0 || index > size) { throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size); } if (index == size) { return add(element); } else { return addBefore(index, element); } } /** * Add last element * * @param element * @return */ private boolean addLast(T element) { Node<T> last = tail; Node<T> newNode = new Node<>(element, last, head); tail = newNode; // add element at first if (last == null) { head = newNode; tail.next = head; } else { last.next = newNode; } head.prev = tail; size++; return true; } /** * add element before certain element * * @param index * @param element * @return */ private boolean addBefore(int index, T element) { Node<T> target = node(index); Node<T> prev = target.prev; Node<T> newNode = new Node<>(element, prev, target); prev.next = newNode; target.prev = newNode; if (index == 0) { head = newNode; } size++; return true; } /** * remove element * * @param element * @return */ @Override public boolean remove(T element) { // start with head Node<T> x = head; // start with index -1 int prevIndex = -1; for (int i = 0; i < size; i++) { if (element == null && x.element == null) { break; } if (element != null && element.equals(x.element)) { break; } x = x.next; prevIndex = i; } // if this linked list is empty if (x == null) { return false; } // if don't match element if (prevIndex == size - 1) { return false; } Node<T> prev = x.prev; Node<T> next = x.next; // if delete node is head if (prevIndex == -1) { head = next; } // if delete node is tail if (prevIndex == size - 2) { tail = prev; } prev.next = next; next.prev = prev; size--; if (size == 0) { head = tail = null; } // for GC x = null; return true; } /** * remove element by index * * @param index * @return */ @Override public T remove(int index) { checkPositionIndex(index); Node<T> x = head; for (int i = 0; i < index; i++) { x = x.next; } // if linked is empty if (x == null) { return null; } Node<T> prev = x.prev; Node<T> next = x.next; // if delete node is head if (index == 0) { head = next; } // if delete node is tail if (index == size - 1) { tail = prev; } prev.next = next; next.prev = prev; size--; if (size == 0) { head = tail = null; } return x.element; } private void checkPositionIndex(int index) { if (index < 0 || index >= size) { throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size); } } /** * set element by index * * @param index * @param element * @return old element */ @Override public T set(int index, T element) { Node<T> oldNode = node(index); T oldElement = oldNode.element; oldNode.element = element; return oldElement; } /** * get element by index * * @param index * @return */ @Override public T get(int index) { return node(index).element; } /** * get element by index * * @param index * @return */ private Node<T> node(int index) { checkPositionIndex(index); if (index < (size >> 1)) { Node<T> x = head; for (int i = 0; i < index; i++) { x = x.next; } return x; } else { Node<T> x = tail; for (int i = size - 1; i > index; i--) { x = x.prev; } return x; } } /** * clear list */ @Override public void clear() { for (Node<T> x = head; x != null; ) { Node<T> next = x.next; x.element = null; x.next = null; x = next; } head = tail = null; size = 0; } /** * contain certain element * * @param element * @return */ @Override public boolean contains(T element) { if (head == null) { return false; } Node<T> x = head; for (int i = 0; i < size; i++) { if (element == null && x.element == null) { return true; } if (element != null && element.equals(x.element)) { return true; } x = x.next; } return false; } /** * get list size * * @return */ @Override public int size() { return size; } /** * Node * * @param <T> */ private class Node<T> { private T element; private Node<T> prev; private Node<T> next; public Node(T element, Node<T> prev, Node<T> next) { this.element = element; this.prev = prev; this.next = next; } } }
源代碼
ArrayList | LinkedList | |
---|---|---|
插入& 刪除 |
O(n) | O(1) |
隨機訪問 | O(1) | O(n) |
優勢 | 連續的內存空間,能夠藉助CPU的預取機制 | 內存不連續,自然支持動態擴容 |
缺點 | 沒法存儲大數據,數組擴容耗性能 | 頻繁地插入刪除操做,會致使內存碎片的增長,致使頻繁的GC |