mysql、pymysql、SQLAlchemy

1.MySQL介紹

http://www.cnblogs.com/wupeiqi/articles/5699254.html,基礎操做參見此文章,此處不贅述。html

安裝:yum install mysql-serverpython

1.1 連表    

     無對應關係則不顯示mysql

        select A.num, A.name, B.name
        from A,B
        Where A.nid = B.nid

        無對應關係則不顯示
        select A.num, A.name, B.name
        from A inner join B
        on A.nid = B.nid

        A表全部顯示,若是B中無對應關係,則值爲null;左邊的表爲主,左表的全部數據會顯示
        select A.num, A.name, B.name
        from A left join B
        on A.nid = B.nid

        B表全部顯示,若是B中無對應關係,則值爲null;右邊的表爲主,右表的全部數據會顯示
        select A.num, A.name, B.name
        from A right join B
        on A.nid = B.nid

 1.2 組合

     組合,自動處理重合,兩個表都有的數據只顯示一次sql

     select nickname from A數據庫

     union編程

     select name from Bsession

     組合,不處理重合,兩個都有的數據顯示兩次oracle

     select nickname from A框架

     union all編程語言

     select name from B

2.pymysql

2.1 安裝

pip3 install pymysql

2.2 使用

2.2.1 執行SQL

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
 
# 建立鏈接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 建立遊標
cursor = conn.cursor()
 
# 執行SQL,並返回收影響行數
effect_row = cursor.execute("update hosts set host = '1.1.1.2'")
 
# 執行SQL,並返回受影響行數
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,))
 
# 執行SQL,並返回受影響行數
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
 
 
# 提交,否則沒法保存新建或者修改的數據
conn.commit()
 
# 關閉遊標
cursor.close()
# 關閉鏈接
conn.close()

2.2.2 獲取新建立數據自增ID

若是ID設置的自增,那插入數據後不知道插的ID是多少,能夠經過「lastrowid」獲取最新插入數據的ID

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
 
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close()
 
# 獲取最新自增ID
new_id = cursor.lastrowid

2.2.3 查詢數據

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
 
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts")
 
# 獲取第一行數據
row_1 = cursor.fetchone()
 
#雖然這個也是fetchone,可是會獲取第二行;下一個fetchone會獲取第三行,這有點相似於yield。
row_1 = cursor.fetchone()

# 獲取前n行數據
# row_2 = cursor.fetchmany(3)
# 獲取全部數據
# row_3 = cursor.fetchall()
 
conn.commit()
cursor.close()
conn.close()

注:在fetch數據時按照順序進行,能夠使用cursor.scroll(num,mode)來移動遊標位置,如:

  • cursor.scroll(1,mode='relative')  # 相對當前位置移動
  • cursor.scroll(2,mode='absolute') # 相對絕對位置移動

2.2.4 fetch數據類型

關於默認獲取的數據是元祖類型,若是想要或者字典類型的數據,即:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
 
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
 
# 遊標設置爲字典類型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
 
result = cursor.fetchone()
 
conn.commit()
cursor.close()
conn.close()

 3. SQLAchemy

SQLAlchemy是Python編程語言下的一款ORM框架,該框架創建在數據庫API之上,使用關係對象映射進行數據庫操做,簡言之即是:將對象轉換成SQL,而後使用數據API執行SQL並獲取執行結果。

各個語言都有ORM框架,ORM框架的做用就是將複雜的SQL語句封裝起來,讓用戶能夠經過調用對象、類、方法作到操做數據庫。

SQLAlchemy自己沒法操做數據庫,其必須依賴pymsql等第三方插件,Dialect用於和DBAPI進行交流,根據配置文件的不一樣調用不一樣的DBAPI,從而實現對數據庫的操做,如:

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
  
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
  
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
  
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
  
更多詳見:http://docs.sqlalchemy.org/en/latest/dialects/index.html

安裝:pip3 install SQLAlchemy

3.1 底層介紹

使用 Engine/ConnectionPooling/Dialect 這三個組件便可進行數據庫操做,Engine(數據庫引擎)使用ConnectionPooling(數據庫鏈接池)鏈接數據庫,而後再經過Dialect執行SQL語句。

但僅僅使用Engine/ConnectionPooling/Dialect 這三個組件只是實現了相似pymysql的功能,並無簡化數據庫操做,繼續往下看。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine
 
 
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
 
# 執行SQL
cur = engine.execute(
     "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
)
 
#新插入行自增ID
cur.lastrowid
 
# 執行SQL,可見,使用engine.execute跟使用pymysql同樣
cur = engine.execute(
"INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
)
 
 
# 執行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
#     host='1.1.1.99', color_id=3
# )
 
# 執行SQL
# cur = engine.execute('select * from hosts')
# 獲取第一行數據
# cur.fetchone()
# 獲取第n行數據
# cur.fetchmany(3)
# 獲取全部數據
# cur.fetchall()

 3.2 ORM功能

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 全部組件對數據進行操做。根據類建立對象,對象轉換成SQL,執行SQL。

3.2.1 建立表

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

Base = declarative_base()

# 建立單表

class Users(Base):
  __tablename__ = 'users'
  id
= Column(Integer, primary_key=True)
  name
= Column(String(32))
  extra
= Column(String(16))

# 一對多
class Favor(Base):
  __tablename__ = 'favor'
  nid
= Column(Integer, primary_key=True)
  caption
= Column(String(50), default='red', unique=True)

class Person(Base):
  __tablename__ = 'person'
  nid
= Column(Integer, primary_key=True)
  name
= Column(String(32), index=True, nullable=True)
  favor_id
= Column(Integer, ForeignKey("favor.nid"))

# 多對多
class Group(Base):
  __tablename__ = 'group'
  id
= Column(Integer, primary_key=True)
  name
= Column(String(64), unique=True, nullable=False)
  port
= Column(Integer, default=22)

class Server(Base):
  __tablename__ = 'server'
  id
= Column(Integer, primary_key=True, autoincrement=True)
  hostname
= Column(String(64), unique=True, nullable=False)

class ServerToGroup(Base):
  __tablename__ = 'servertogroup'
  nid
= Column(Integer, primary_key=True, autoincrement=True)
  server_id
= Column(Integer, ForeignKey('server.id'))
  group_id
= Column(Integer, ForeignKey('group.id'))

def
init_db():
  Base.metadata.create_all(engine)

def drop_db():
  Base.metadata.drop_all(engine)

3.2.2 操做表

Session = sessionmaker(bind=engine)
session = Session()
obj = Users(name="alex0", extra='sb')
session.add(obj)
session.add_all([
    Users(name="alex1", extra='sb'),
    Users(name="alex2", extra='sb'),
])
session.commit()

session.query(Users).filter(Users.id > 2).delete()
session.commit()

session.query(Users).filter(Users.id > 2).update({"name" : "099"})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()

ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first()

其餘

# 條件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
    or_(
        Users.id < 2,
        and_(Users.name == 'eric', Users.id > 3),
        Users.extra != ""
    )).all()


# 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all()

# 限制
ret = session.query(Users)[1:2]

# 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()

# 分組
from sqlalchemy.sql import func

ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).all()

ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()

# 連表

ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()

ret = session.query(Person).join(Favor).all()  //這是inner join

ret = session.query(Person).join(Favor, isouter=True).all()   //由於有isouter=True,這就變成了left join;沒有right join,但能夠改變兩個表的位置。


# 組合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
相關文章
相關標籤/搜索