從實驗到生產,簡單快速部署機器學習模型一直是一個挑戰。這個過程要作的就是將訓練好的模型對外提供預測服務。在生產中,這個過程須要可重現,隔離和安全。這裏,咱們使用基於Docker的TensorFlow Serving來簡單地完成這個過程。TensorFlow 從1.8版本開始支持Docker部署,包括CPU和GPU,很是方便。node
獲取模型的第一步固然是訓練一個模型,可是這不是本篇的重點,因此咱們使用一個已經訓練好的模型,好比ResNet。TensorFlow Serving 使用SavedModel這種格式來保存其模型,SavedModel是一種獨立於語言的,可恢復,密集的序列化格式,支持使用更高級別的系統和工具來生成,使用和轉換TensorFlow模型。這裏咱們直接下載一個預訓練好的模型:python
$ mkdir /tmp/resnet $ curl -s https://storage.googleapis.com/download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NHWC_jpg.tar.gz | tar --strip-components=2 -C /tmp/resnet -xvz
若是是使用其餘框架好比Keras生成的模型,則須要將模型轉換爲SavedModel格式,好比:git
from keras.models import Sequential from keras import backend as K import tensorflow as tf model = Sequential() # 中間省略模型構建 # 模型轉換爲SavedModel signature = tf.saved_model.signature_def_utils.predict_signature_def( inputs={'input_param': model.input}, outputs={'type': model.output}) builder = tf.saved_model.builder.SavedModelBuilder('/tmp/output_model_path/1/') builder.add_meta_graph_and_variables( sess=K.get_session(), tags=[tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature }) builder.save()
下載完成後,文件目錄樹爲:github
$ tree /tmp/resnet /tmp/resnet └── 1538687457 ├── saved_model.pb └── variables ├── variables.data-00000-of-00001 └── variables.index
使用Docker部署模型服務:docker
$ docker pull tensorflow/serving $ docker run -p 8500:8500 -p 8501:8501 --name tfserving_resnet \ --mount type=bind,source=/tmp/resnet,target=/models/resnet \ -e MODEL_NAME=resnet -t tensorflow/serving
其中,8500
端口對於TensorFlow Serving提供的gRPC端口,8501
爲REST API服務端口。-e MODEL_NAME=resnet
指出TensorFlow Serving須要加載的模型名稱,這裏爲resnet
。上述命令輸出爲shell
2019-03-04 02:52:26.610387: I tensorflow_serving/model_servers/server.cc:82] Building single TensorFlow model file config: model_name: resnet model_base_path: /models/resnet 2019-03-04 02:52:26.618200: I tensorflow_serving/model_servers/server_core.cc:461] Adding/updating models. 2019-03-04 02:52:26.618628: I tensorflow_serving/model_servers/server_core.cc:558] (Re-)adding model: resnet 2019-03-04 02:52:26.745813: I tensorflow_serving/core/basic_manager.cc:739] Successfully reserved resources to load servable {name: resnet version: 1538687457} 2019-03-04 02:52:26.745901: I tensorflow_serving/core/loader_harness.cc:66] Approving load for servable version {name: resnet version: 1538687457} 2019-03-04 02:52:26.745935: I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: resnet version: 1538687457} 2019-03-04 02:52:26.747590: I external/org_tensorflow/tensorflow/contrib/session_bundle/bundle_shim.cc:363] Attempting to load native SavedModelBundle in bundle-shim from: /models/resnet/1538687457 2019-03-04 02:52:26.747705: I external/org_tensorflow/tensorflow/cc/saved_model/reader.cc:31] Reading SavedModel from: /models/resnet/1538687457 2019-03-04 02:52:26.795363: I external/org_tensorflow/tensorflow/cc/saved_model/reader.cc:54] Reading meta graph with tags { serve } 2019-03-04 02:52:26.828614: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2019-03-04 02:52:26.923902: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:162] Restoring SavedModel bundle. 2019-03-04 02:52:28.098479: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:138] Running MainOp with key saved_model_main_op on SavedModel bundle. 2019-03-04 02:52:28.144510: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:259] SavedModel load for tags { serve }; Status: success. Took 1396689 microseconds. 2019-03-04 02:52:28.146646: I tensorflow_serving/servables/tensorflow/saved_model_warmup.cc:83] No warmup data file found at /models/resnet/1538687457/assets.extra/tf_serving_warmup_requests 2019-03-04 02:52:28.168063: I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: resnet version: 1538687457} 2019-03-04 02:52:28.174902: I tensorflow_serving/model_servers/server.cc:286] Running gRPC ModelServer at 0.0.0.0:8500 ... [warn] getaddrinfo: address family for nodename not supported 2019-03-04 02:52:28.186724: I tensorflow_serving/model_servers/server.cc:302] Exporting HTTP/REST API at:localhost:8501 ... [evhttp_server.cc : 237] RAW: Entering the event loop ...
咱們能夠看到,TensorFlow Serving使用1538687457
做爲模型的版本號。咱們使用curl命令來查看一下啓動的服務狀態,也能夠看到提供服務的模型版本以及模型狀態。json
$ curl http://localhost:8501/v1/models/resnet { "model_version_status": [ { "version": "1538687457", "state": "AVAILABLE", "status": { "error_code": "OK", "error_message": "" } } ] }
不少時候咱們須要查看模型的輸出和輸出參數的具體形式,TensorFlow提供了一個saved_model_cli
命令來查看模型的輸入和輸出參數:api
$ saved_model_cli show --dir /tmp/resnet/1538687457/ --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['predict']: The given SavedModel SignatureDef contains the following input(s): inputs['image_bytes'] tensor_info: dtype: DT_STRING shape: (-1) name: input_tensor:0 The given SavedModel SignatureDef contains the following output(s): outputs['classes'] tensor_info: dtype: DT_INT64 shape: (-1) name: ArgMax:0 outputs['probabilities'] tensor_info: dtype: DT_FLOAT shape: (-1, 1001) name: softmax_tensor:0 Method name is: tensorflow/serving/predict signature_def['serving_default']: The given SavedModel SignatureDef contains the following input(s): inputs['image_bytes'] tensor_info: dtype: DT_STRING shape: (-1) name: input_tensor:0 The given SavedModel SignatureDef contains the following output(s): outputs['classes'] tensor_info: dtype: DT_INT64 shape: (-1) name: ArgMax:0 outputs['probabilities'] tensor_info: dtype: DT_FLOAT shape: (-1, 1001) name: softmax_tensor:0 Method name is: tensorflow/serving/predict
注意到signature_def
,inputs
的名稱,類型和輸出,這些參數在接下來的模型預測請求中須要。安全
TensorFlow Serving提供REST API和gRPC兩種請求方式,接下來將具體這兩種方式。session
咱們下載一個客戶端腳本,這個腳本會下載一張貓的圖片,同時使用這張圖片來計算服務請求時間。
$ curl -o /tmp/resnet/resnet_client.py https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client.py
如下腳本使用requests
庫來請求接口,使用圖片的base64編碼字符串做爲請求內容,返回圖片分類,並計算了平均處理時間。
from __future__ import print_function import base64 import requests # The server URL specifies the endpoint of your server running the ResNet # model with the name "resnet" and using the predict interface. SERVER_URL = 'http://localhost:8501/v1/models/resnet:predict' # The image URL is the location of the image we should send to the server IMAGE_URL = 'https://tensorflow.org/images/blogs/serving/cat.jpg' def main(): # Download the image dl_request = requests.get(IMAGE_URL, stream=True) dl_request.raise_for_status() # Compose a JSON Predict request (send JPEG image in base64). jpeg_bytes = base64.b64encode(dl_request.content).decode('utf-8') predict_request = '{"instances" : [{"b64": "%s"}]}' % jpeg_bytes # Send few requests to warm-up the model. for _ in range(3): response = requests.post(SERVER_URL, data=predict_request) response.raise_for_status() # Send few actual requests and report average latency. total_time = 0 num_requests = 10 for _ in range(num_requests): response = requests.post(SERVER_URL, data=predict_request) response.raise_for_status() total_time += response.elapsed.total_seconds() prediction = response.json()['predictions'][0] print('Prediction class: {}, avg latency: {} ms'.format( prediction['classes'], (total_time*1000)/num_requests)) if __name__ == '__main__': main()
輸出結果爲
$ python resnet_client.py Prediction class: 286, avg latency: 210.12310000000002 ms
讓咱們下載另外一個客戶端腳本,這個腳本使用gRPC做爲服務,傳入圖片並獲取輸出結果。這個腳本須要安裝tensorflow-serving-api
這個庫。
$ curl -o /tmp/resnet/resnet_client_grpc.py https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client_grpc.py $ pip install tensorflow-serving-api
腳本內容:
from __future__ import print_function # This is a placeholder for a Google-internal import. import grpc import requests import tensorflow as tf from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc # The image URL is the location of the image we should send to the server IMAGE_URL = 'https://tensorflow.org/images/blogs/serving/cat.jpg' tf.app.flags.DEFINE_string('server', 'localhost:8500', 'PredictionService host:port') tf.app.flags.DEFINE_string('image', '', 'path to image in JPEG format') FLAGS = tf.app.flags.FLAGS def main(_): if FLAGS.image: with open(FLAGS.image, 'rb') as f: data = f.read() else: # Download the image since we weren't given one dl_request = requests.get(IMAGE_URL, stream=True) dl_request.raise_for_status() data = dl_request.content channel = grpc.insecure_channel(FLAGS.server) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) # Send request # See prediction_service.proto for gRPC request/response details. request = predict_pb2.PredictRequest() request.model_spec.name = 'resnet' request.model_spec.signature_name = 'serving_default' request.inputs['image_bytes'].CopyFrom( tf.contrib.util.make_tensor_proto(data, shape=[1])) result = stub.Predict(request, 10.0) # 10 secs timeout print(result) if __name__ == '__main__': tf.app.run()
輸出的結果能夠看到圖片的分類,機率和使用的模型信息:
$ python resnet_client_grpc.py outputs { key: "classes" value { dtype: DT_INT64 tensor_shape { dim { size: 1 } } int64_val: 286 } } outputs { key: "probabilities" value { dtype: DT_FLOAT tensor_shape { dim { size: 1 } dim { size: 1001 } } float_val: 2.4162832232832443e-06 float_val: 1.9012182974620373e-06 float_val: 2.7247710022493266e-05 float_val: 4.426385658007348e-07 ...(中間省略) float_val: 1.4636580090154894e-05 float_val: 5.812107133351674e-07 float_val: 6.599806511076167e-05 float_val: 0.0012952701654285192 } } model_spec { name: "resnet" version { value: 1538687457 } signature_name: "serving_default" }
TensorFlows serving有時會有輸出以下的日誌:
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
TensorFlow Serving已發佈Docker鏡像旨在儘量多地使用CPU架構,所以省略了一些優化以最大限度地提升兼容性。若是你沒有看到此消息,則你的二進制文件可能已針對你的CPU進行了優化。根據你的模型執行的操做,這些優化可能會對你的服務性能產生重大影響。幸運的是,編譯優化的TensorFlow Serving二進制很是簡單。官方已經提供了自動化腳本,分如下兩部進行:
# 1. 編譯開發版本 $ docker build -t $USER/tensorflow-serving-devel -f Dockerfile.devel https://github.com/tensorflow/serving.git#:tensorflow_serving/tools/docker # 2. 生產新的鏡像 $ docker build -t $USER/tensorflow-serving --build-arg TF_SERVING_BUILD_IMAGE=$USER/tensorflow-serving-devel https://github.com/tensorflow/serving.git#:tensorflow_serving/tools/docker
以後,使用新編譯的$USER/tensorflow-serving
從新啓動服務便可。
上面咱們快速實踐了使用TensorFlow Serving和Docker部署機器學習服務的過程,能夠看到,TensorFlow Serving提供了很是方便和高效的模型管理,配合Docker,能夠快速搭建起機器學習服務。
GitHub repo: qiwihui/blogFollow me: @qiwihui
Site: QIWIHUI