JavaShuo
欄目
標籤
DCNNs Trained by Cascaded Softmax and Generalized Large-Margin Losses
時間 2021-01-17
欄目
CSS
简体版
原文
原文鏈接
利用級聯Softmax和廣義大邊緣損失訓練的改進DCNNs進行細粒度圖像分類 Abstract: 我們使用一般的深度卷積神經網絡(DCNN)來開發一個細粒度的圖像分類器。我們從以下兩個方面來提高DCNN模型的細粒度圖像分類精度。首先,對給定訓練數據集中包含的細粒度圖像類的h級層次標籤結構進行更好的建模,我們引入h全連通(fc)層來代替給定DCNN模型的頂層fc層,並用級聯的softmax損失訓練它
>>阅读原文<<
相關文章
1.
[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax
2.
[Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification
3.
LR and Softmax
4.
Generalized face anti-spoofing by detecting pulse from face videos
5.
The GAN Landscape: Losses, Architectures, Regularization, and Normalization
6.
Easily export trained Apache Spark ML models and pipelines
7.
論文《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》
8.
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
9.
論文筆記1.2——Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
10.
【CV基石】Softmax and CrossEntropy
更多相關文章...
•
SQLite Indexed By
-
SQLite教程
•
SQLite Group By
-
SQLite教程
•
RxJava操作符(七)Conditional and Boolean
•
RxJava操作符(一)Creating Observables
相關標籤/搜索
cascaded
losses
generalized
trained
softmax
action.....and
between...and
react+and
by+limit
group...by
CSS
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 讓chrome支持小於12px的文字
2.
集合的一點小總結
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基礎,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打開iOS真機調試操作
8.
improved open set domain adaptation with backpropagation 學習筆記
9.
Chrome插件 GitHub-Chart Commits3D直方圖視圖
10.
CISCO ASAv 9.15 - 體驗思科上一代防火牆
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax
2.
[Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification
3.
LR and Softmax
4.
Generalized face anti-spoofing by detecting pulse from face videos
5.
The GAN Landscape: Losses, Architectures, Regularization, and Normalization
6.
Easily export trained Apache Spark ML models and pipelines
7.
論文《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》
8.
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
9.
論文筆記1.2——Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
10.
【CV基石】Softmax and CrossEntropy
>>更多相關文章<<