NB: 由於softmax,NN看上去是分類,實際上是擬合(迴歸),擬合最大似然。html
多分類參見:[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax算法
感知機採用的是形式最簡單的梯度網絡
Perceptron and SGDClassifier share the same underlying implementation.In fact, Perceptron() is equivalent to SGDClassifier(loss=」perceptron」, eta0=1, learning_rate=」constant」, penalty=None).dom
1.5. Stochastic Gradient Descent機器學習
須要一些背景知識,參見斯坦福 CS231n - CNN for Visual Recognition 2 - lecture3函數
參考:斯坦福CS231n - CNN for Visual Recognition 2 - lecture3 Optimization
post
Linear SVM classifier的一個例子。學習
(1) 計算損失函數:Multiclass SVM loss優化
一個批次,三張圖片,分別獲得以下的預測值;然後計算loss。ui
與"另外兩個"的比較:
L = (2.9 + 0 + 10.9)/3
= 4.6
(2) 正則化
典型例子說服你:咱們固然prefer後一個,w2 。
Ref: Loss functions for classification
(a) Softmax classifier 的 Softmax's Loss 計算:
(b) Linear SVM classifier 的 hinge loss 計算:
經過該演示體會:http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
第一步,邏輯迴歸的損失函數能夠是「得分差」,固然也能夠是其餘。
第二步,利用「得分差」來進行梯度降低,進行參數優化。
常見有選擇兩種損失函數,以下:
(1)最小二乘損失函數:邏輯迴歸與梯度降低法所有詳細推導
(2)交叉熵損失函數:機器學習算法 --- 邏輯迴歸及梯度降低(正統策略)
Softmax參見:[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax
LogisticRegression (交叉熵損失,迭代) versus SGDClassifier(loss="log")
the major difference is the optimization algorithm:
Question: Liblinear/Coordinate Descent vs. Stochastic Gradient Descent.問題:線性梯度降低 vs 隨機梯度降低
If your problem is high dimensional (10K or more) and you have a large
number of examples (100K or more) you should choose the latter -
otherwise, LogisticRegression should be fine.高維,更高的數據:隨機梯度降低
反之:Liblinear/Coordinate梯度降低
迭代便可,
Both are not proper multinomial logistic regression models;
LogisticRegression does not care and simply computes the probability
estimates of each OVR classifier and normalized to make sure they sum
to one. You could do the same for SGDClassifier(loss='log') but you
have to implement it on your own. You should be aware of the fact that
SGDClassifier(n_jobs > 1) uses multiple processes, thus, if your
dataset (``X``) is too large (more than 50% of your RAM) you'll run
into troubles.
========================================= SGD: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)
# 生成樣本(上),即刻訓練(下)
# fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([[x1, x2]]) Z[i, j] = p[0]
levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
Result:
SGDClassifier 的重要參數
具體的損失函數能夠經過 loss
參數來設置。SGDClassifier
支持如下幾種損失函數:
loss="hinge"
: (soft-margin) linear Support Vector Machine,loss="modified_huber"
: smoothed hinge loss,loss="log"
: logistic regression,- and all regression losses below.
上述中前兩個損失函數lazy的,它們只有在某個樣本違反了margin(間隔)限制纔會更新模型參數,這樣的訓練過程很是有效,而且能夠應用在稀疏模型上,甚至當使用了L2罰項的時候。
具體的罰項能夠經過 penalty
參數。SGD支持一下幾種罰項:
penalty="l2"
: L2 norm penalty oncoef_
.penalty="l1"
: L1 norm penalty oncoef_
.penalty="elasticnet"
: Convex combination of L2 and L1;(1 - l1_ratio) * L2 + l1_ratio * L1
.
penalty="l2"
。L1罰項會致使稀疏的解,使大多數稀疏爲0。彈性網絡解決了當屬性高度相關狀況下L1罰項的不足。參數
l1_ratio
控制 L1 和 L2 罰項的凸組合。
SGDClassifier
經過組合多個「one versus all(OVA)」形式的二分類器來支持多類分類。
"Softmax 迴歸 vs. k 個二元分類器 —— 這一選擇取決於你的類別之間是否互斥"
對於 類中每一個類別,二分類器經過判別該類和其它 類來學習。
經過隨機梯度降低解線性分類問題。
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with
iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target colors = "bry"
# shuffle 洗牌
idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize
mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh
clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot
Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points
for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired)
plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers
xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
Result:
""" ===================== SGD: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight = 100 * np.abs(np.random.randn(20)) # and assign a bigger weight to the last 10 samples sample_weight[:10] *= 10 # plot the weighted data points xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9, cmap=plt.cm.bone) #散點圖 ## fit the unweighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid']) ## fit the weighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y, sample_weight=sample_weight) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed']) plt.legend([no_weights.collections[0], samples_weights.collections[0]], ["no weights", "with weights"], loc="lower left") plt.xticks(()) plt.yticks(()) plt.show()
Result:
End.