ML.NET 發佈0.11版本:.NET中的機器學習,爲TensorFlow和ONNX添加了新功能

微軟發佈了其最新版本的機器學習框架:ML.NET 0.11帶來了新功能和突破性變化。php

ML.NET 0.11發佈:.NET中的機器學習,具備TensorFlow和ONNX的新功能

新版本的機器學習開源框架爲TensorFlow和ONNX添加了新功能,但也包括一些重大變化, 這也是發佈RC版本以前的最後一個預覽版,這個月底將發佈0.12版本,也就是RC1。git

ML.NET的創新0.11

0.11 版本的ML.NET如今還支持 TensorFlowTransformer組件中的文本輸入數據。TensorFlow模型不只可用於圖像,還可用於文本分析。這在.NET博客的代碼示例中進行了說明,該博客使用TensorFlow模型進行情感分析:github

public class TensorFlowSentiment框架

{機器學習

public string Sentiment_Text;學習

[VectorType(600)]ui

public int[] Features;this

[VectorType(2)]google

public float[] Prediction;url

}

[TensorFlowFact]

public void TensorFlowSentimentClassificationTest()

{

var mlContext = new MLContext(seed: 1, conc: 1);

var data = new[] { new TensorFlowSentiment() { Sentiment_Text = "this film was just brilliant casting location scenery story direction everyone's really suited the part they played and you could just imagine being there robert  is an amazing actor and now the same being director  father came from the same scottish island as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was just brilliant so much that i bought the film as soon as it was released for  and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and you know what they say if you cry at a film it must have been good and this definitely was also  to the two little boy's that played the  of norman and paul they were just brilliant children are often left out of the  list i think because the stars that play them all grown up are such a big profile for the whole film but these children are amazing and should be praised for what they have done don't you think the whole story was so lovely because it was true and was someone's life after all that was shared with us all" } };

var dataView = mlContext.Data.ReadFromEnumerable(data);

var lookupMap = mlContext.Data.ReadFromTextFile(@"sentiment_model/imdb_word_index.csv",

columns: new[]

{

new TextLoader.Column("Words", DataKind.TX, 0),

new TextLoader.Column("Ids", DataKind.I4, 1),

},

separatorChar: ','

);

var estimator = mlContext.Transforms.Text.TokenizeWords("TokenizedWords", "Sentiment_Text")

.Append(mlContext.Transforms.Conversion.ValueMap(lookupMap, "Words", "Ids", new[] { ("Features", "TokenizedWords") }));

var dataPipe = estimator.Fit(dataView)

.CreatePredictionEngine<TensorFlowSentiment, TensorFlowSentiment>(mlContext);

string modelLocation = @"sentiment_model";

var tfEnginePipe = mlContext.Transforms.ScoreTensorFlowModel(modelLocation, new[] { "Prediction/Softmax" }, new[] { "Features" })

.Append(mlContext.Transforms.CopyColumns(("Prediction", "Prediction/Softmax")))

.Fit(dataView)

.CreatePredictionEngine<TensorFlowSentiment, TensorFlowSentiment>(mlContext);

//Predict the sentiment for the sample data

var processedData = dataPipe.Predict(data[0]);

Array.Resize(ref processedData.Features, 600);

var prediction = tfEnginePipe.Predict(processedData);

}

還爲MLContext目錄添加了其餘機器學習組件。這應該能夠更容易地找到類和操做。該圖顯示了基於智能提示的用戶體驗。

該ONNX組件還進行了重構:Microsoft.ML.ONNX  更改成 Microsoft.ML.ONNXConverter Microsoft.ML.ONNXTrans .FORM更改成Microsoft.ML.ONNXTransformer 。這更清晰的表達ONNX轉換和轉換之間的區別。ONNX是一種開放且可互操做的模型格式,容許您在框架中訓練模型,以及在另外一個框架中使用。例如:Scikit-learn 或TensorFlow 訓練的模型放到 在ML.NET中使用。

與以前版本的ML.NET 0.10相比,ML.NET 0.11包含一些重大更改,包括刪除Microsoft.ML.Core命名空間。破壞性性更改 列表已發佈在GitHub上。有關ML.NET 0.11中的新功能的更詳細信息參見 .NET博客文章:https://devblogs.microsoft.com/dotnet/announcing-ml-net-0-11-machine-learning-for-net/

相關文章
相關標籤/搜索