手把手教你分離flutter ios 編譯產物--附工具

手把手教你分離flutter ios 編譯產物--附工具

一、爲何寫這篇文章?

Flutter ios安裝包size的裁剪一直是個備受關注的主題,年前字節跳動分享了一篇文章(http://www.javashuo.com/article/p-srlgmach-gp.html),提到了ios分離AOT編譯產物,把裏面的數據段和資源提取出來以減小安裝包size,但文章裏面並無展開介紹如何實現,這篇文章會很詳細的分析如何分離AOT編譯產物。並給出工具,方便沒編譯flutter engine經驗的同窗也能夠快速的實現這功能。ios

二、ios編譯產物構成

本文主要分析App.framework裏面的生成流程,以及如何分離AOT編譯產物,App.framework的構成以下圖所示。c++

image

主要有App動態庫二進制文件、flutter_assets還有Info.plist三部分構成,而App動態庫二進制文件又由4部分構成,vm的數據段、代碼段和isolate的數據段、代碼段。其中flutter_assets、vm數據段、isolate數據段都是能夠不打包到ipa中,能夠從外部document中加載到,這就讓咱們有縮減ipa包的可能了。git

三、真實線上項目AOT編譯產物先後對比

不少人確定會關心最終縮減的效果。咱們先給出一個真實線上項目,用官方編譯engine和用分離產物的engine生成的App.framework的對比圖。github

官方engine生成的App.framework構成以下,其中App動態庫二進制文件19.2M,flutter_assets有3.3M,共22.5M。shell

image

image

用分離產物的engine生成的App.framework構成以下,只剩App動態庫二進制文件14.8M。xcode

image

App.framework從22.5裁到14.8M,不一樣項目可能不同。緩存

四、AOT編譯產物生成原理及分離方法介紹

每次xcode項目進行進行構建前都會運行xcode_backend.sh這個腳本進行flutter產物打包,咱們從xcode_backend.sh開始分析。從上文分析App.framework裏面總共有三個文件生成二進制文件App、資源文件flutter_assets目錄和Info.plist文件,這裏面咱們只關心二進制文件App和flutter_assets目錄是怎樣生成的。服務器

4.一、App文件生成流程

4.1.一、xcode_backend.sh

分析xcode_backend.sh,咱們能夠發現生成App和flutter_assets的關鍵shell代碼以下架構

# App動態庫二進制文件
RunCommand "${FLUTTER_ROOT}/bin/flutter" --suppress-analytics           \
  ${verbose_flag}                                                       \
  build aot                                                             \
  --output-dir="${build_dir}/aot"                                       \
  --target-platform=ios                                                 \
  --target="${target_path}"                                             \
  --${build_mode}                                                       \
  --ios-arch="${archs}"                                                 \
  ${flutter_engine_flag}                                                \
  ${local_engine_flag}                                                  \
  ${bitcode_flag}

.
.
.

RunCommand cp -r -- "${app_framework}" "${derived_dir}"


# 生成flutter_assets
RunCommand "${FLUTTER_ROOT}/bin/flutter"     \
    ${verbose_flag}                                                         \
    build bundle                                                            \
    --target-platform=ios                                                   \
    --target="${target_path}"                                               \
    --${build_mode}                                                         \
    --depfile="${build_dir}/snapshot_blob.bin.d"                            \
    --asset-dir="${derived_dir}/App.framework/${assets_path}"               \
    ${precompilation_flag}                                                  \
    ${flutter_engine_flag}                                                  \
    ${local_engine_flag}                                                    \
    ${track_widget_creation_flag}

4.1.二、${FLUTTER_ROOT}/bin/flutter

從上面的代碼能夠看到這裏調用了的遠行了 /bin/flutter 這個shell腳本,這裏介紹另外一篇講解Flutter命令執行機制的文章/bin/flutter 裏面提到真正運行代碼的是app

...
FLUTTER_TOOLS_DIR="$FLUTTER_ROOT/packages/flutter_tools"
SNAPSHOT_PATH="$FLUTTER_ROOT/bin/cache/flutter_tools.snapshot"
STAMP_PATH="$FLUTTER_ROOT/bin/cache/flutter_tools.stamp"
SCRIPT_PATH="$FLUTTER_TOOLS_DIR/bin/flutter_tools.dart"
DART_SDK_PATH="$FLUTTER_ROOT/bin/cache/dart-sdk"

DART="$DART_SDK_PATH/bin/dart"
PUB="$DART_SDK_PATH/bin/pub"

//真正的執行邏輯
"$DART" $FLUTTER_TOOL_ARGS "$SNAPSHOT_PATH" "$@"

//等價於下面的命令
/bin/cache/dart-sdk/bin/dart $FLUTTER_TOOL_ARGS "bin/cache/flutter_tools.snapshot" "$@"

就是說經過dart命令運行flutter_tools.snapshot這個產物

4.1.三、dart代碼

flutter_tools.snapshot的入口是

[-> flutter/packages/flutter_tools/bin/flutter_tools.dart]

import 'package:flutter_tools/executable.dart' as executable;

void main(List<String> args) {
  executable.main(args); 
}
import 'runner.dart' as runner;

Future<void> main(List<String> args) async {
  ...
  await runner.run(args, <FlutterCommand>[
    AnalyzeCommand(verboseHelp: verboseHelp),
    AttachCommand(verboseHelp: verboseHelp),
    BuildCommand(verboseHelp: verboseHelp),
    ChannelCommand(verboseHelp: verboseHelp),
    CleanCommand(),
    ConfigCommand(verboseHelp: verboseHelp),
    CreateCommand(),
    DaemonCommand(hidden: !verboseHelp),
    DevicesCommand(),
    DoctorCommand(verbose: verbose),
    DriveCommand(),
    EmulatorsCommand(),
    FormatCommand(),
    GenerateCommand(),
    IdeConfigCommand(hidden: !verboseHelp),
    InjectPluginsCommand(hidden: !verboseHelp),
    InstallCommand(),
    LogsCommand(),
    MakeHostAppEditableCommand(),
    PackagesCommand(),
    PrecacheCommand(),
    RunCommand(verboseHelp: verboseHelp),
    ScreenshotCommand(),
    ShellCompletionCommand(),
    StopCommand(),
    TestCommand(verboseHelp: verboseHelp),
    TraceCommand(),
    TrainingCommand(),
    UpdatePackagesCommand(hidden: !verboseHelp),
    UpgradeCommand(),
    VersionCommand(),
  ], verbose: verbose,
     muteCommandLogging: muteCommandLogging,
     verboseHelp: verboseHelp,
     overrides: <Type, Generator>{
       CodeGenerator: () => const BuildRunner(),
     });
}

通過一輪調用後,真正編譯產物的類在 GenSnapshot.run,調用棧http://gityuan.com/2019/09/07/flutter_run/這篇文章有詳細介紹,這裏就不細說了

[-> lib/src/base/build.dart]

class GenSnapshot {

  Future<int> run({
    @required SnapshotType snapshotType,
    IOSArch iosArch,
    Iterable<String> additionalArgs = const <String>[],
  }) {
    final List<String> args = <String>[
      '--causal_async_stacks',
    ]..addAll(additionalArgs);
    //獲取gen_snapshot命令的路徑
    final String snapshotterPath = getSnapshotterPath(snapshotType);

    //iOS gen_snapshot是一個多體系結構二進制文件。 做爲i386二進制文件運行將生成armv7代碼。 做爲x86_64二進制文件運行將生成arm64代碼。
    // /usr/bin/arch可用於運行具備指定體系結構的二進制文件
    if (snapshotType.platform == TargetPlatform.ios) {
      final String hostArch = iosArch == IOSArch.armv7 ? '-i386' : '-x86_64';
      return runCommandAndStreamOutput(<String>['/usr/bin/arch', hostArch, snapshotterPath]..addAll(args));
    }
    return runCommandAndStreamOutput(<String>[snapshotterPath]..addAll(args));
  }
}

GenSnapshot.run具體命令根據前面的封裝,最終等價於:

//這是針對iOS的genSnapshot命令
/usr/bin/arch -x86_64 flutter/bin/cache/artifacts/engine/ios-release/gen_snapshot
  --causal_async_stacks
  --deterministic
  --snapshot_kind=app-aot-assembly
  --assembly=build/aot/arm64/snapshot_assembly.S
  build/aot/app.dill

此處gen_snapshot是一個二進制可執行文件,所對應的執行方法源碼爲third_party/dart/runtime/bin/gen_snapshot.cc
這個文件是flutter engine裏面文件,須要拉取engine的代碼才能修改,編譯flutter engine 能夠參考文章手把手教你編譯Flutter engine,下文咱們也會介紹編譯完flutter engine ,怎麼拿到gen_snapshot編譯後的二進制文件。

4.1.四、flutter engine c++代碼

Flutter機器碼生成gen_snapshot這篇文章對gen_snapshot流程作了詳細的分析,這裏我直接給出最後結論,生成數據段和代碼段的代碼在
AssemblyImageWriter::WriteText這個函數裏面

[-> third_party/dart/runtime/vm/image_snapshot.cc]

void AssemblyImageWriter::WriteText(WriteStream* clustered_stream, bool vm) {
  Zone* zone = Thread::Current()->zone();
  //寫入頭部
  const char* instructions_symbol = vm ? "_kDartVmSnapshotInstructions" : "_kDartIsolateSnapshotInstructions";
  assembly_stream_.Print(".text\n");
  assembly_stream_.Print(".globl %s\n", instructions_symbol);
  assembly_stream_.Print(".balign %" Pd ", 0\n", VirtualMemory::PageSize());
  assembly_stream_.Print("%s:\n", instructions_symbol);

  //寫入頭部空白字符,使得指令快照看起來像堆頁
  intptr_t instructions_length = next_text_offset_;
  WriteWordLiteralText(instructions_length);
  intptr_t header_words = Image::kHeaderSize / sizeof(uword);
  for (intptr_t i = 1; i < header_words; i++) {
    WriteWordLiteralText(0);
  }

  //寫入序幕.cfi_xxx
  FrameUnwindPrologue();

  Object& owner = Object::Handle(zone);
  String& str = String::Handle(zone);
  ObjectStore* object_store = Isolate::Current()->object_store();

  TypeTestingStubNamer tts;
  intptr_t text_offset = 0;

  for (intptr_t i = 0; i < instructions_.length(); i++) {
    auto& data = instructions_[i];
    const bool is_trampoline = data.trampoline_bytes != nullptr;
    if (is_trampoline) {     //針對跳牀函數
      const auto start = reinterpret_cast<uword>(data.trampoline_bytes);
      const auto end = start + data.trampline_length;
       //寫入.quad xxx字符串
      text_offset += WriteByteSequence(start, end);
      delete[] data.trampoline_bytes;
      data.trampoline_bytes = nullptr;
      continue;
    }

    const intptr_t instr_start = text_offset;
    const Instructions& insns = *data.insns_;
    const Code& code = *data.code_;
    // 1. 寫入 頭部到入口點
    {
      NoSafepointScope no_safepoint;

      uword beginning = reinterpret_cast<uword>(insns.raw_ptr());
      uword entry = beginning + Instructions::HeaderSize(); //ARM64 32位對齊

      //指令的只讀標記
      uword marked_tags = insns.raw_ptr()->tags_;
      marked_tags = RawObject::OldBit::update(true, marked_tags);
      marked_tags = RawObject::OldAndNotMarkedBit::update(false, marked_tags);
      marked_tags = RawObject::OldAndNotRememberedBit::update(true, marked_tags);
      marked_tags = RawObject::NewBit::update(false, marked_tags);
      //寫入標記
      WriteWordLiteralText(marked_tags);
      beginning += sizeof(uword);
      text_offset += sizeof(uword);
      text_offset += WriteByteSequence(beginning, entry);
    }

    // 2. 在入口點寫入標籤
    owner = code.owner();
    if (owner.IsNull()) {  
      // owner爲空,說明是一個常規的stub,其中stub列表定義在stub_code_list.h中的VM_STUB_CODE_LIST
      const char* name = StubCode::NameOfStub(insns.EntryPoint());
      if (name != nullptr) {
        assembly_stream_.Print("Precompiled_Stub_%s:\n", name);
      } else {
        if (name == nullptr) {
          // isolate專有的stub代碼[見小節3.5.1]
          name = NameOfStubIsolateSpecificStub(object_store, code);
        }
        assembly_stream_.Print("Precompiled__%s:\n", name);
      }
    } else if (owner.IsClass()) {
      //owner爲Class,說明是該類分配的stub,其中class列表定義在class_id.h中的CLASS_LIST_NO_OBJECT_NOR_STRING_NOR_ARRAY
      str = Class::Cast(owner).Name();
      const char* name = str.ToCString();
      EnsureAssemblerIdentifier(const_cast<char*>(name));
      assembly_stream_.Print("Precompiled_AllocationStub_%s_%" Pd ":\n", name,
                             i);
    } else if (owner.IsAbstractType()) {
      const char* name = tts.StubNameForType(AbstractType::Cast(owner));
      assembly_stream_.Print("Precompiled_%s:\n", name);
    } else if (owner.IsFunction()) { //owner爲Function,說明是一個常規的dart函數
      const char* name = Function::Cast(owner).ToQualifiedCString();
      EnsureAssemblerIdentifier(const_cast<char*>(name));
      assembly_stream_.Print("Precompiled_%s_%" Pd ":\n", name, i);
    } else {
      UNREACHABLE();
    }

#ifdef DART_PRECOMPILER
    // 建立一個標籤用於DWARF
    if (!code.IsNull()) {
      const intptr_t dwarf_index = dwarf_->AddCode(code);
      assembly_stream_.Print(".Lcode%" Pd ":\n", dwarf_index);
    }
#endif

    {
      // 3. 寫入 入口點到結束
      NoSafepointScope no_safepoint;
      uword beginning = reinterpret_cast<uword>(insns.raw_ptr());
      uword entry = beginning + Instructions::HeaderSize();
      uword payload_size = insns.raw()->HeapSize() - insns.HeaderSize();
      uword end = entry + payload_size;
      text_offset += WriteByteSequence(entry, end);
    }
  }

  FrameUnwindEpilogue();

#if defined(TARGET_OS_LINUX) || defined(TARGET_OS_ANDROID) ||                  \
    defined(TARGET_OS_FUCHSIA)
  assembly_stream_.Print(".section .rodata\n");
#elif defined(TARGET_OS_MACOS) || defined(TARGET_OS_MACOS_IOS)
  assembly_stream_.Print(".const\n");
#else
  UNIMPLEMENTED();
#endif
  //寫入數據段
  const char* data_symbol = vm ? "_kDartVmSnapshotData" : "_kDartIsolateSnapshotData";
  assembly_stream_.Print(".globl %s\n", data_symbol);
  assembly_stream_.Print(".balign %" Pd ", 0\n",
                         OS::kMaxPreferredCodeAlignment);
  assembly_stream_.Print("%s:\n", data_symbol);
  uword buffer = reinterpret_cast<uword>(clustered_stream->buffer());
  intptr_t length = clustered_stream->bytes_written();
  WriteByteSequence(buffer, buffer + length);
}

這裏是生成的是snapshot_assembly.S,後面在dart代碼還將對這個文件加工成App動態庫文件,咱們會在下文介紹,咱們要作代碼段和數據段分離修改的就是這個c++函數,首先改掉代碼不寫進snapshot_assembly.S,在另外的地方把二進制數據保存起來。後面經過修改engine的加載流程從外部加載這二進制數據,便可達到分離代碼段和數據段的目的。下面咱們繼續分析生成完snapshot_assembly.S後,在哪裏生成App動態庫二進制文件。

4.1.五、dart代碼調用xcrun生成二進制文件和動態庫

生成完snapshot_assembly.S後,再加工關鍵代碼在[-> lib/src/base/build.dart]

/// Builds an iOS or macOS framework at [outputPath]/App.framework from the assembly
  /// source at [assemblyPath].
  Future<RunResult> _buildFramework({
    @required DarwinArch appleArch,
    @required bool isIOS,
    @required String assemblyPath,
    @required String outputPath,
    @required bool bitcode,
    @required bool quiet
  }) async {
    final String targetArch = getNameForDarwinArch(appleArch);
    if (!quiet) {
      printStatus('Building App.framework for $targetArch...');
    }

    final List<String> commonBuildOptions = <String>[
      '-arch', targetArch,
      if (isIOS)
        '-miphoneos-version-min=8.0',
    ];

    const String embedBitcodeArg = '-fembed-bitcode';
    final String assemblyO = fs.path.join(outputPath, 'snapshot_assembly.o');
    List<String> isysrootArgs;
    if (isIOS) {
      final String iPhoneSDKLocation = await xcode.sdkLocation(SdkType.iPhone);
      if (iPhoneSDKLocation != null) {
        isysrootArgs = <String>['-isysroot', iPhoneSDKLocation];
      }
    }
    //生成snapshot_assembly.o二進制文件
    final RunResult compileResult = await xcode.cc(<String>[
      '-arch', targetArch,
      if (isysrootArgs != null) ...isysrootArgs,
      if (bitcode) embedBitcodeArg,
      '-c',
      assemblyPath,
      '-o',
      assemblyO,
    ]);
    if (compileResult.exitCode != 0) {
      printError('Failed to compile AOT snapshot. Compiler terminated with exit code ${compileResult.exitCode}');
      return compileResult;
    }

    final String frameworkDir = fs.path.join(outputPath, 'App.framework');
    fs.directory(frameworkDir).createSync(recursive: true);
    final String appLib = fs.path.join(frameworkDir, 'App');
    final List<String> linkArgs = <String>[
      ...commonBuildOptions,
      '-dynamiclib',
      '-Xlinker', '-rpath', '-Xlinker', '@executable_path/Frameworks',
      '-Xlinker', '-rpath', '-Xlinker', '@loader_path/Frameworks',
      '-install_name', '@rpath/App.framework/App',
      if (bitcode) embedBitcodeArg,
      if (isysrootArgs != null) ...isysrootArgs,
      '-o', appLib,
      assemblyO,
    ];
    //打包成動態庫
    final RunResult linkResult = await xcode.clang(linkArgs);
    if (linkResult.exitCode != 0) {
      printError('Failed to link AOT snapshot. Linker terminated with exit code ${compileResult.exitCode}');
    }
    return linkResult;
  }

這裏最終會調用xcrun cc命令和xcrun clang命令打包動態庫二進制文件。

4.1.六、修改生成動態庫文件App的流程

根據上面的分析整個流程涉及dart代碼和c++代碼,dart代碼其實不在engine,屬於flutter項目,只須要用打開[-> packages/flutter_tools]這個flutter
項目,直接修改就好,要注意一點,flutter_tools的編譯產物是有緩存的,緩存路徑是[-> bin/cache/flutter_tools.snapshot],每次咱們修改完dart代碼,都須要刪掉flutter_tools.snapshot從新生成才能生效。

那c++部分代碼呢,首先設計c++代碼都是須要從新編譯flutter engine, 能夠參考文章手把手教你編譯Flutter engine,編譯後engine的產物,以下圖

image

把編譯後的gen_snapshot文件拷貝到flutter目錄下,下圖的位置便可。

image

注意,engine是分架構的,arm64的gen_snapshot名字是gen_snapshot_arm64,armv7的gen_snapshot名字是gen_snapshot_armv7,完成替換後,咱們定製的代碼就能夠生效了。

4.1.七、生成動態庫文件App流程總結

至此,生成動態庫文件App的所有流程都介紹清楚了,關鍵部分就是修改4.1.4提到的c++函數,咱們修改完後的編譯產物以下。

image

提取到了4個文件,分別是arm64和armv7架構下的vm數據段和isolate數據段,能夠按需下發給數據段文件給應用,從而實現flutter ios 動態庫編譯產物的裁剪。

4.二、flutter_assets生成流程

像4.1.1和4.1.2說的那樣,具體生成flutter_assets的代碼在BundleBuilder.dart文件

[-> packages/flutter_tools/lib/src/bundle.dart]

Future<void> build({
    @required TargetPlatform platform,
    BuildMode buildMode,
    String mainPath,
    String manifestPath = defaultManifestPath,
    String applicationKernelFilePath,
    String depfilePath,
    String privateKeyPath = defaultPrivateKeyPath,
    String assetDirPath,
    String packagesPath,
    bool precompiledSnapshot = false,
    bool reportLicensedPackages = false,
    bool trackWidgetCreation = false,
    List<String> extraFrontEndOptions = const <String>[],
    List<String> extraGenSnapshotOptions = const <String>[],
    List<String> fileSystemRoots,
    String fileSystemScheme,
  }) async {
    mainPath ??= defaultMainPath;
    depfilePath ??= defaultDepfilePath;
    assetDirPath ??= getAssetBuildDirectory();
    printStatus("assetDirPath" + assetDirPath);
    printStatus("mainPath" + mainPath);
    packagesPath ??= fs.path.absolute(PackageMap.globalPackagesPath);
    final FlutterProject flutterProject = FlutterProject.current();
    await buildWithAssemble(
      buildMode: buildMode ?? BuildMode.debug,
      targetPlatform: platform,
      mainPath: mainPath,
      flutterProject: flutterProject,
      outputDir: assetDirPath,
      depfilePath: depfilePath,
      precompiled: precompiledSnapshot,
      trackWidgetCreation: trackWidgetCreation,
    );
    // Work around for flutter_tester placing kernel artifacts in odd places.
    if (applicationKernelFilePath != null) {
      final File outputDill = fs.directory(assetDirPath).childFile('kernel_blob.bin');
      if (outputDill.existsSync()) {
        outputDill.copySync(applicationKernelFilePath);
      }
    }
    return;
  }

這裏assetDirPath就是最終打包產生bundle產物的路徑,咱們只要修改這個路徑,不指向App.framework,指向其餘路徑,就能夠避免打包進app。

4.三、AOT編譯產物生成原理總結

至此,咱們已經把AOT編譯產物裏面的動態庫文件App、flutter_assets,的生成流程解析清楚了,也把如何分離的方法介紹了,對咱們的demo作完修改後的產物跟分離前的產物對好比下圖所示

分離前

image

分離後

image

那下面咱們分析如何修改flutter engine的加載流程,使engine再也不加載App.framework裏面的資源(由於已經分離出來),去加載外部給予的資源

五、AOT編譯產物加載流程及修改方法介紹

上面咱們已經成功從App.framework裏面分離出了數據段數據已經flutter_assets,如今須要修改加載流程,加載外部數據。

5.一、數據段加載流程分析及修改

加載數據段的堆棧以下。

image

能夠看到實際上是用::dlsym從動態庫裏面讀出數據段的數據強轉成const uint8_t使用,咱們只要修改代碼,不從動態庫讀取,外部提供一個const uint8_t來代替就行了

我最終選擇在下圖的兩個地方修改

image

image

這裏我直接構造一個SymbolMapping返回,SymbolMapping的定義以下

class SymbolMapping final : public Mapping {
 public:
  SymbolMapping(fml::RefPtr<fml::NativeLibrary> native_library,
                const char* symbol_name);
                
  //新增一個構造函數直接傳如外部數據
  SymbolMapping(const uint8_t * data);

  ~SymbolMapping() override;

  // |Mapping|
  size_t GetSize() const override;

  // |Mapping|
  const uint8_t* GetMapping() const override;

 private:
  fml::RefPtr<fml::NativeLibrary> native_library_;
  const uint8_t* mapping_ = nullptr;

  FML_DISALLOW_COPY_AND_ASSIGN(SymbolMapping);
};

修改了這裏,咱們就能夠完成外部數據段的加載了。

5.二、flutter_assets加載流程分析及修改

這個比較簡單,咱們直接上代碼,

image

只要改了settings.assets_path,改爲外部的路徑就行了。

5.三、修改engine總結

到這裏,咱們已經成功分離好engine了,分離以後對於不少混編的項目就是,flutter並非必須的,就能夠吧數據段部分和flutter_assets不打包進ipa,按需的下載下來,從而實現ipa的減size,下午會給出編好的engine、gen_snapshot文件和demo。固然,有些業務甚至不但願下載,想調用流程徹底不變,也能夠減size,這個因爲篇幅有限,咱們後面再寫一篇專門給出方法和工具。

六、工具介紹和使用

從上面的分析能夠看出,搞這個事情,要不少鋪墊,很麻煩,不少同窗並不想摸索這麼久才能在本身的項目進行實驗,看效果,爲了方便你們驗證,我直接把基於v1.12.13+hotfix.7編好的engine、gen_snapshot文件和demo放到github上,讓你們直接用.編出來的Flutter.framework是全架構支持的、通過優化的release版,能夠直接上線的。下面介紹下運行流程。

6.1如何運行demo驗證

github上下載demo,不作任何改動,用真機直接運行,能夠看到產物以下圖所示,App動態庫 5.5M,flutter_assets 715k,總大小 6.3M。

image

image

而後執行下面的操做,替換engine

  • 把github上的Flutter.framework覆蓋掉[->/bin/cache/artifacts/engine/ios-release/Flutter.framework]這個目下的Flutter.framework
  • 把github上的gen_snapshot_arm64覆蓋掉[->/bin/cache/artifacts/engine/ios-release/gen_snapshot_arm64]
  • 把github上的gen_snapshot_armv7覆蓋掉[->/bin/cache/artifacts/engine/ios-release/gen_snapshot_armv7]
  • 而後把github上的bundle.dart覆蓋掉[->packages/flutter_tools/lib/src/bundle.dart]目錄下的bundle.dart文件
  • 而後刪掉[->bin/cache/flutter_tools.snapshot],這個文件是dart項目生成的二進制文件,刪除了新的bundle.dart才能生效
  • 而後從新跑起項目,觀察編譯產物

能夠看到產物以下圖所示,只剩下4.6M的產物了,這是demo的壓縮效果。

image

七、總結

目前使用這方案,能夠分離編譯產物和flutter_assets,但也須要app作必定的改動,就是從服務器下載數據段和flutter_assets,才能運行flutter。固然還有一個方法,直接對數據段進行壓縮,運行的時候解壓,這個也是可行的,但壓縮率就沒這麼高,後面咱們也會開源並給出文章介紹。

相關文章
相關標籤/搜索