Flutter ios安裝包size的裁剪一直是個備受關注的主題,年前字節跳動分享了一篇文章(http://www.javashuo.com/article/p-srlgmach-gp.html),提到了ios分離AOT編譯產物,把裏面的數據段和資源提取出來以減小安裝包size,但文章裏面並無展開介紹如何實現,這篇文章會很詳細的分析如何分離AOT編譯產物。並給出工具,方便沒編譯flutter engine經驗的同窗也能夠快速的實現這功能。ios
本文主要分析App.framework裏面的生成流程,以及如何分離AOT編譯產物,App.framework的構成以下圖所示。c++
主要有App動態庫二進制文件、flutter_assets還有Info.plist三部分構成,而App動態庫二進制文件又由4部分構成,vm的數據段、代碼段和isolate的數據段、代碼段。其中flutter_assets、vm數據段、isolate數據段都是能夠不打包到ipa中,能夠從外部document中加載到,這就讓咱們有縮減ipa包的可能了。git
不少人確定會關心最終縮減的效果。咱們先給出一個真實線上項目,用官方編譯engine和用分離產物的engine生成的App.framework的對比圖。github
官方engine生成的App.framework構成以下,其中App動態庫二進制文件19.2M,flutter_assets有3.3M,共22.5M。shell
用分離產物的engine生成的App.framework構成以下,只剩App動態庫二進制文件14.8M。xcode
App.framework從22.5裁到14.8M,不一樣項目可能不同。緩存
每次xcode項目進行進行構建前都會運行xcode_backend.sh這個腳本進行flutter產物打包,咱們從xcode_backend.sh開始分析。從上文分析App.framework裏面總共有三個文件生成二進制文件App、資源文件flutter_assets目錄和Info.plist文件,這裏面咱們只關心二進制文件App和flutter_assets目錄是怎樣生成的。服務器
分析xcode_backend.sh,咱們能夠發現生成App和flutter_assets的關鍵shell代碼以下架構
# App動態庫二進制文件 RunCommand "${FLUTTER_ROOT}/bin/flutter" --suppress-analytics \ ${verbose_flag} \ build aot \ --output-dir="${build_dir}/aot" \ --target-platform=ios \ --target="${target_path}" \ --${build_mode} \ --ios-arch="${archs}" \ ${flutter_engine_flag} \ ${local_engine_flag} \ ${bitcode_flag} . . . RunCommand cp -r -- "${app_framework}" "${derived_dir}" # 生成flutter_assets RunCommand "${FLUTTER_ROOT}/bin/flutter" \ ${verbose_flag} \ build bundle \ --target-platform=ios \ --target="${target_path}" \ --${build_mode} \ --depfile="${build_dir}/snapshot_blob.bin.d" \ --asset-dir="${derived_dir}/App.framework/${assets_path}" \ ${precompilation_flag} \ ${flutter_engine_flag} \ ${local_engine_flag} \ ${track_widget_creation_flag}
從上面的代碼能夠看到這裏調用了的遠行了 /bin/flutter 這個shell腳本,這裏介紹另外一篇講解Flutter命令執行機制的文章, /bin/flutter 裏面提到真正運行代碼的是app
... FLUTTER_TOOLS_DIR="$FLUTTER_ROOT/packages/flutter_tools" SNAPSHOT_PATH="$FLUTTER_ROOT/bin/cache/flutter_tools.snapshot" STAMP_PATH="$FLUTTER_ROOT/bin/cache/flutter_tools.stamp" SCRIPT_PATH="$FLUTTER_TOOLS_DIR/bin/flutter_tools.dart" DART_SDK_PATH="$FLUTTER_ROOT/bin/cache/dart-sdk" DART="$DART_SDK_PATH/bin/dart" PUB="$DART_SDK_PATH/bin/pub" //真正的執行邏輯 "$DART" $FLUTTER_TOOL_ARGS "$SNAPSHOT_PATH" "$@" //等價於下面的命令 /bin/cache/dart-sdk/bin/dart $FLUTTER_TOOL_ARGS "bin/cache/flutter_tools.snapshot" "$@"
就是說經過dart命令運行flutter_tools.snapshot這個產物
flutter_tools.snapshot的入口是
[-> flutter/packages/flutter_tools/bin/flutter_tools.dart]
import 'package:flutter_tools/executable.dart' as executable; void main(List<String> args) { executable.main(args); }
import 'runner.dart' as runner; Future<void> main(List<String> args) async { ... await runner.run(args, <FlutterCommand>[ AnalyzeCommand(verboseHelp: verboseHelp), AttachCommand(verboseHelp: verboseHelp), BuildCommand(verboseHelp: verboseHelp), ChannelCommand(verboseHelp: verboseHelp), CleanCommand(), ConfigCommand(verboseHelp: verboseHelp), CreateCommand(), DaemonCommand(hidden: !verboseHelp), DevicesCommand(), DoctorCommand(verbose: verbose), DriveCommand(), EmulatorsCommand(), FormatCommand(), GenerateCommand(), IdeConfigCommand(hidden: !verboseHelp), InjectPluginsCommand(hidden: !verboseHelp), InstallCommand(), LogsCommand(), MakeHostAppEditableCommand(), PackagesCommand(), PrecacheCommand(), RunCommand(verboseHelp: verboseHelp), ScreenshotCommand(), ShellCompletionCommand(), StopCommand(), TestCommand(verboseHelp: verboseHelp), TraceCommand(), TrainingCommand(), UpdatePackagesCommand(hidden: !verboseHelp), UpgradeCommand(), VersionCommand(), ], verbose: verbose, muteCommandLogging: muteCommandLogging, verboseHelp: verboseHelp, overrides: <Type, Generator>{ CodeGenerator: () => const BuildRunner(), }); }
通過一輪調用後,真正編譯產物的類在 GenSnapshot.run,調用棧http://gityuan.com/2019/09/07/flutter_run/這篇文章有詳細介紹,這裏就不細說了
[-> lib/src/base/build.dart]
class GenSnapshot { Future<int> run({ @required SnapshotType snapshotType, IOSArch iosArch, Iterable<String> additionalArgs = const <String>[], }) { final List<String> args = <String>[ '--causal_async_stacks', ]..addAll(additionalArgs); //獲取gen_snapshot命令的路徑 final String snapshotterPath = getSnapshotterPath(snapshotType); //iOS gen_snapshot是一個多體系結構二進制文件。 做爲i386二進制文件運行將生成armv7代碼。 做爲x86_64二進制文件運行將生成arm64代碼。 // /usr/bin/arch可用於運行具備指定體系結構的二進制文件 if (snapshotType.platform == TargetPlatform.ios) { final String hostArch = iosArch == IOSArch.armv7 ? '-i386' : '-x86_64'; return runCommandAndStreamOutput(<String>['/usr/bin/arch', hostArch, snapshotterPath]..addAll(args)); } return runCommandAndStreamOutput(<String>[snapshotterPath]..addAll(args)); } }
GenSnapshot.run具體命令根據前面的封裝,最終等價於:
//這是針對iOS的genSnapshot命令 /usr/bin/arch -x86_64 flutter/bin/cache/artifacts/engine/ios-release/gen_snapshot --causal_async_stacks --deterministic --snapshot_kind=app-aot-assembly --assembly=build/aot/arm64/snapshot_assembly.S build/aot/app.dill
此處gen_snapshot是一個二進制可執行文件,所對應的執行方法源碼爲third_party/dart/runtime/bin/gen_snapshot.cc
這個文件是flutter engine裏面文件,須要拉取engine的代碼才能修改,編譯flutter engine 能夠參考文章手把手教你編譯Flutter engine,下文咱們也會介紹編譯完flutter engine ,怎麼拿到gen_snapshot編譯後的二進制文件。
Flutter機器碼生成gen_snapshot這篇文章對gen_snapshot流程作了詳細的分析,這裏我直接給出最後結論,生成數據段和代碼段的代碼在
AssemblyImageWriter::WriteText這個函數裏面
[-> third_party/dart/runtime/vm/image_snapshot.cc]
void AssemblyImageWriter::WriteText(WriteStream* clustered_stream, bool vm) { Zone* zone = Thread::Current()->zone(); //寫入頭部 const char* instructions_symbol = vm ? "_kDartVmSnapshotInstructions" : "_kDartIsolateSnapshotInstructions"; assembly_stream_.Print(".text\n"); assembly_stream_.Print(".globl %s\n", instructions_symbol); assembly_stream_.Print(".balign %" Pd ", 0\n", VirtualMemory::PageSize()); assembly_stream_.Print("%s:\n", instructions_symbol); //寫入頭部空白字符,使得指令快照看起來像堆頁 intptr_t instructions_length = next_text_offset_; WriteWordLiteralText(instructions_length); intptr_t header_words = Image::kHeaderSize / sizeof(uword); for (intptr_t i = 1; i < header_words; i++) { WriteWordLiteralText(0); } //寫入序幕.cfi_xxx FrameUnwindPrologue(); Object& owner = Object::Handle(zone); String& str = String::Handle(zone); ObjectStore* object_store = Isolate::Current()->object_store(); TypeTestingStubNamer tts; intptr_t text_offset = 0; for (intptr_t i = 0; i < instructions_.length(); i++) { auto& data = instructions_[i]; const bool is_trampoline = data.trampoline_bytes != nullptr; if (is_trampoline) { //針對跳牀函數 const auto start = reinterpret_cast<uword>(data.trampoline_bytes); const auto end = start + data.trampline_length; //寫入.quad xxx字符串 text_offset += WriteByteSequence(start, end); delete[] data.trampoline_bytes; data.trampoline_bytes = nullptr; continue; } const intptr_t instr_start = text_offset; const Instructions& insns = *data.insns_; const Code& code = *data.code_; // 1. 寫入 頭部到入口點 { NoSafepointScope no_safepoint; uword beginning = reinterpret_cast<uword>(insns.raw_ptr()); uword entry = beginning + Instructions::HeaderSize(); //ARM64 32位對齊 //指令的只讀標記 uword marked_tags = insns.raw_ptr()->tags_; marked_tags = RawObject::OldBit::update(true, marked_tags); marked_tags = RawObject::OldAndNotMarkedBit::update(false, marked_tags); marked_tags = RawObject::OldAndNotRememberedBit::update(true, marked_tags); marked_tags = RawObject::NewBit::update(false, marked_tags); //寫入標記 WriteWordLiteralText(marked_tags); beginning += sizeof(uword); text_offset += sizeof(uword); text_offset += WriteByteSequence(beginning, entry); } // 2. 在入口點寫入標籤 owner = code.owner(); if (owner.IsNull()) { // owner爲空,說明是一個常規的stub,其中stub列表定義在stub_code_list.h中的VM_STUB_CODE_LIST const char* name = StubCode::NameOfStub(insns.EntryPoint()); if (name != nullptr) { assembly_stream_.Print("Precompiled_Stub_%s:\n", name); } else { if (name == nullptr) { // isolate專有的stub代碼[見小節3.5.1] name = NameOfStubIsolateSpecificStub(object_store, code); } assembly_stream_.Print("Precompiled__%s:\n", name); } } else if (owner.IsClass()) { //owner爲Class,說明是該類分配的stub,其中class列表定義在class_id.h中的CLASS_LIST_NO_OBJECT_NOR_STRING_NOR_ARRAY str = Class::Cast(owner).Name(); const char* name = str.ToCString(); EnsureAssemblerIdentifier(const_cast<char*>(name)); assembly_stream_.Print("Precompiled_AllocationStub_%s_%" Pd ":\n", name, i); } else if (owner.IsAbstractType()) { const char* name = tts.StubNameForType(AbstractType::Cast(owner)); assembly_stream_.Print("Precompiled_%s:\n", name); } else if (owner.IsFunction()) { //owner爲Function,說明是一個常規的dart函數 const char* name = Function::Cast(owner).ToQualifiedCString(); EnsureAssemblerIdentifier(const_cast<char*>(name)); assembly_stream_.Print("Precompiled_%s_%" Pd ":\n", name, i); } else { UNREACHABLE(); } #ifdef DART_PRECOMPILER // 建立一個標籤用於DWARF if (!code.IsNull()) { const intptr_t dwarf_index = dwarf_->AddCode(code); assembly_stream_.Print(".Lcode%" Pd ":\n", dwarf_index); } #endif { // 3. 寫入 入口點到結束 NoSafepointScope no_safepoint; uword beginning = reinterpret_cast<uword>(insns.raw_ptr()); uword entry = beginning + Instructions::HeaderSize(); uword payload_size = insns.raw()->HeapSize() - insns.HeaderSize(); uword end = entry + payload_size; text_offset += WriteByteSequence(entry, end); } } FrameUnwindEpilogue(); #if defined(TARGET_OS_LINUX) || defined(TARGET_OS_ANDROID) || \ defined(TARGET_OS_FUCHSIA) assembly_stream_.Print(".section .rodata\n"); #elif defined(TARGET_OS_MACOS) || defined(TARGET_OS_MACOS_IOS) assembly_stream_.Print(".const\n"); #else UNIMPLEMENTED(); #endif //寫入數據段 const char* data_symbol = vm ? "_kDartVmSnapshotData" : "_kDartIsolateSnapshotData"; assembly_stream_.Print(".globl %s\n", data_symbol); assembly_stream_.Print(".balign %" Pd ", 0\n", OS::kMaxPreferredCodeAlignment); assembly_stream_.Print("%s:\n", data_symbol); uword buffer = reinterpret_cast<uword>(clustered_stream->buffer()); intptr_t length = clustered_stream->bytes_written(); WriteByteSequence(buffer, buffer + length); }
這裏是生成的是snapshot_assembly.S,後面在dart代碼還將對這個文件加工成App動態庫文件,咱們會在下文介紹,咱們要作代碼段和數據段分離修改的就是這個c++函數,首先改掉代碼不寫進snapshot_assembly.S,在另外的地方把二進制數據保存起來。後面經過修改engine的加載流程從外部加載這二進制數據,便可達到分離代碼段和數據段的目的。下面咱們繼續分析生成完snapshot_assembly.S後,在哪裏生成App動態庫二進制文件。
生成完snapshot_assembly.S後,再加工關鍵代碼在[-> lib/src/base/build.dart]
/// Builds an iOS or macOS framework at [outputPath]/App.framework from the assembly /// source at [assemblyPath]. Future<RunResult> _buildFramework({ @required DarwinArch appleArch, @required bool isIOS, @required String assemblyPath, @required String outputPath, @required bool bitcode, @required bool quiet }) async { final String targetArch = getNameForDarwinArch(appleArch); if (!quiet) { printStatus('Building App.framework for $targetArch...'); } final List<String> commonBuildOptions = <String>[ '-arch', targetArch, if (isIOS) '-miphoneos-version-min=8.0', ]; const String embedBitcodeArg = '-fembed-bitcode'; final String assemblyO = fs.path.join(outputPath, 'snapshot_assembly.o'); List<String> isysrootArgs; if (isIOS) { final String iPhoneSDKLocation = await xcode.sdkLocation(SdkType.iPhone); if (iPhoneSDKLocation != null) { isysrootArgs = <String>['-isysroot', iPhoneSDKLocation]; } } //生成snapshot_assembly.o二進制文件 final RunResult compileResult = await xcode.cc(<String>[ '-arch', targetArch, if (isysrootArgs != null) ...isysrootArgs, if (bitcode) embedBitcodeArg, '-c', assemblyPath, '-o', assemblyO, ]); if (compileResult.exitCode != 0) { printError('Failed to compile AOT snapshot. Compiler terminated with exit code ${compileResult.exitCode}'); return compileResult; } final String frameworkDir = fs.path.join(outputPath, 'App.framework'); fs.directory(frameworkDir).createSync(recursive: true); final String appLib = fs.path.join(frameworkDir, 'App'); final List<String> linkArgs = <String>[ ...commonBuildOptions, '-dynamiclib', '-Xlinker', '-rpath', '-Xlinker', '@executable_path/Frameworks', '-Xlinker', '-rpath', '-Xlinker', '@loader_path/Frameworks', '-install_name', '@rpath/App.framework/App', if (bitcode) embedBitcodeArg, if (isysrootArgs != null) ...isysrootArgs, '-o', appLib, assemblyO, ]; //打包成動態庫 final RunResult linkResult = await xcode.clang(linkArgs); if (linkResult.exitCode != 0) { printError('Failed to link AOT snapshot. Linker terminated with exit code ${compileResult.exitCode}'); } return linkResult; }
這裏最終會調用xcrun cc命令和xcrun clang命令打包動態庫二進制文件。
根據上面的分析整個流程涉及dart代碼和c++代碼,dart代碼其實不在engine,屬於flutter項目,只須要用打開[-> packages/flutter_tools]這個flutter
項目,直接修改就好,要注意一點,flutter_tools的編譯產物是有緩存的,緩存路徑是[-> bin/cache/flutter_tools.snapshot],每次咱們修改完dart代碼,都須要刪掉flutter_tools.snapshot從新生成才能生效。
那c++部分代碼呢,首先設計c++代碼都是須要從新編譯flutter engine, 能夠參考文章手把手教你編譯Flutter engine,編譯後engine的產物,以下圖
把編譯後的gen_snapshot文件拷貝到flutter目錄下,下圖的位置便可。
注意,engine是分架構的,arm64的gen_snapshot名字是gen_snapshot_arm64,armv7的gen_snapshot名字是gen_snapshot_armv7,完成替換後,咱們定製的代碼就能夠生效了。
至此,生成動態庫文件App的所有流程都介紹清楚了,關鍵部分就是修改4.1.4提到的c++函數,咱們修改完後的編譯產物以下。
提取到了4個文件,分別是arm64和armv7架構下的vm數據段和isolate數據段,能夠按需下發給數據段文件給應用,從而實現flutter ios 動態庫編譯產物的裁剪。
像4.1.1和4.1.2說的那樣,具體生成flutter_assets的代碼在BundleBuilder.dart文件
[-> packages/flutter_tools/lib/src/bundle.dart]
Future<void> build({ @required TargetPlatform platform, BuildMode buildMode, String mainPath, String manifestPath = defaultManifestPath, String applicationKernelFilePath, String depfilePath, String privateKeyPath = defaultPrivateKeyPath, String assetDirPath, String packagesPath, bool precompiledSnapshot = false, bool reportLicensedPackages = false, bool trackWidgetCreation = false, List<String> extraFrontEndOptions = const <String>[], List<String> extraGenSnapshotOptions = const <String>[], List<String> fileSystemRoots, String fileSystemScheme, }) async { mainPath ??= defaultMainPath; depfilePath ??= defaultDepfilePath; assetDirPath ??= getAssetBuildDirectory(); printStatus("assetDirPath" + assetDirPath); printStatus("mainPath" + mainPath); packagesPath ??= fs.path.absolute(PackageMap.globalPackagesPath); final FlutterProject flutterProject = FlutterProject.current(); await buildWithAssemble( buildMode: buildMode ?? BuildMode.debug, targetPlatform: platform, mainPath: mainPath, flutterProject: flutterProject, outputDir: assetDirPath, depfilePath: depfilePath, precompiled: precompiledSnapshot, trackWidgetCreation: trackWidgetCreation, ); // Work around for flutter_tester placing kernel artifacts in odd places. if (applicationKernelFilePath != null) { final File outputDill = fs.directory(assetDirPath).childFile('kernel_blob.bin'); if (outputDill.existsSync()) { outputDill.copySync(applicationKernelFilePath); } } return; }
這裏assetDirPath就是最終打包產生bundle產物的路徑,咱們只要修改這個路徑,不指向App.framework,指向其餘路徑,就能夠避免打包進app。
至此,咱們已經把AOT編譯產物裏面的動態庫文件App、flutter_assets,的生成流程解析清楚了,也把如何分離的方法介紹了,對咱們的demo作完修改後的產物跟分離前的產物對好比下圖所示
分離前
分離後
那下面咱們分析如何修改flutter engine的加載流程,使engine再也不加載App.framework裏面的資源(由於已經分離出來),去加載外部給予的資源
上面咱們已經成功從App.framework裏面分離出了數據段數據已經flutter_assets,如今須要修改加載流程,加載外部數據。
加載數據段的堆棧以下。
能夠看到實際上是用::dlsym從動態庫裏面讀出數據段的數據強轉成const uint8_t使用,咱們只要修改代碼,不從動態庫讀取,外部提供一個const uint8_t來代替就行了
我最終選擇在下圖的兩個地方修改
這裏我直接構造一個SymbolMapping返回,SymbolMapping的定義以下
class SymbolMapping final : public Mapping { public: SymbolMapping(fml::RefPtr<fml::NativeLibrary> native_library, const char* symbol_name); //新增一個構造函數直接傳如外部數據 SymbolMapping(const uint8_t * data); ~SymbolMapping() override; // |Mapping| size_t GetSize() const override; // |Mapping| const uint8_t* GetMapping() const override; private: fml::RefPtr<fml::NativeLibrary> native_library_; const uint8_t* mapping_ = nullptr; FML_DISALLOW_COPY_AND_ASSIGN(SymbolMapping); };
修改了這裏,咱們就能夠完成外部數據段的加載了。
這個比較簡單,咱們直接上代碼,
只要改了settings.assets_path,改爲外部的路徑就行了。
到這裏,咱們已經成功分離好engine了,分離以後對於不少混編的項目就是,flutter並非必須的,就能夠吧數據段部分和flutter_assets不打包進ipa,按需的下載下來,從而實現ipa的減size,下午會給出編好的engine、gen_snapshot文件和demo。固然,有些業務甚至不但願下載,想調用流程徹底不變,也能夠減size,這個因爲篇幅有限,咱們後面再寫一篇專門給出方法和工具。
從上面的分析能夠看出,搞這個事情,要不少鋪墊,很麻煩,不少同窗並不想摸索這麼久才能在本身的項目進行實驗,看效果,爲了方便你們驗證,我直接把基於v1.12.13+hotfix.7編好的engine、gen_snapshot文件和demo放到github上,讓你們直接用.編出來的Flutter.framework是全架構支持的、通過優化的release版,能夠直接上線的。下面介紹下運行流程。
在github上下載demo,不作任何改動,用真機直接運行,能夠看到產物以下圖所示,App動態庫 5.5M,flutter_assets 715k,總大小 6.3M。
而後執行下面的操做,替換engine
能夠看到產物以下圖所示,只剩下4.6M的產物了,這是demo的壓縮效果。
目前使用這方案,能夠分離編譯產物和flutter_assets,但也須要app作必定的改動,就是從服務器下載數據段和flutter_assets,才能運行flutter。固然還有一個方法,直接對數據段進行壓縮,運行的時候解壓,這個也是可行的,但壓縮率就沒這麼高,後面咱們也會開源並給出文章介紹。