數據結構 - 樹形選擇排序 (tree selection sort) 具體解釋 及 代碼(C++)

樹形選擇排序 (tree selection sort) 具體解釋 及 代碼(C++)


本文地址: http://blog.csdn.net/caroline_wendynode


算法邏輯: 依據節點的大小, 創建樹, 輸出樹的根節點, 並把此重置爲最大值, 再重構樹.ios

因爲樹中保留了一些比較的邏輯, 因此下降了比較次數.算法

也稱錦標賽排序, 時間複雜度爲O(nlogn), 因爲每個值(共n個)需要進行樹的深度(logn)次比較.數組

參考<數據結構>(嚴蔚敏版) 第278-279頁.數據結構


樹形選擇排序(tree selection sort)是堆排序的一個過渡, 並不是核心算法. less

但是全然依照書上算法, 實現起來極其麻煩, 差點兒沒有不論什麼人實現過.eclipse

需要記錄建樹的順序, 在重構時, 才幹下降比較.post


本着娛樂和分享的精神, 應人之邀, 簡單的實現了一下.ui


代碼:spa

/*
 * TreeSelectionSort.cpp
 *
 *  Created on: 2014.6.11
 *      Author: Spike
 */

/*eclipse cdt,  gcc 4.8.1*/

#include <iostream>
#include <vector>
#include <stack>
#include <queue>
#include <utility>
#include <climits>

using namespace std;

/*樹的結構*/
struct BinaryTreeNode{
	bool from; //推斷來源, 左true, 右false
	int m_nValue;
	BinaryTreeNode* m_pLeft;
	BinaryTreeNode* m_pRight;
};

/*構建葉子節點*/
BinaryTreeNode* buildList (const std::vector<int>& L)
{
	BinaryTreeNode* btnList = new BinaryTreeNode[L.size()];

	for (std::size_t i=0; i<L.size(); ++i)
	{
		btnList[i].from = true;
		btnList[i].m_nValue = L[i];
		btnList[i].m_pLeft = NULL;
		btnList[i].m_pRight = NULL;
	}

	return btnList;
}

/*不足偶數時, 需補充節點*/
BinaryTreeNode* addMaxNode (BinaryTreeNode* list, int n)
{
	/*最大節點*/
	BinaryTreeNode* maxNode = new BinaryTreeNode(); //最大節點, 用於填充
	maxNode->from = true;
	maxNode->m_nValue = INT_MAX;
	maxNode->m_pLeft = NULL;
	maxNode->m_pRight = NULL;

	/*複製數組*/
	BinaryTreeNode* childNodes = new BinaryTreeNode[n+1]; //添加一個節點
	for (int i=0; i<n; ++i) {
		childNodes[i].from = list[i].from;
		childNodes[i].m_nValue = list[i].m_nValue;
		childNodes[i].m_pLeft = list[i].m_pLeft;
		childNodes[i].m_pRight = list[i].m_pRight;
	}
	childNodes[n] = *maxNode;
	delete[] list;
	list = NULL;

	return childNodes;
}

/*依據左右子樹大小, 建立樹*/
BinaryTreeNode* buildTree (BinaryTreeNode* childNodes, int n)
{
	if (n == 1) {
		return childNodes;
	}

	if (n%2 == 1) {
		childNodes = addMaxNode(childNodes, n);
	}


	int num = n/2 + n%2;
	BinaryTreeNode* btnList = new BinaryTreeNode[num];
	for (int i=0; i<num; ++i) {
		btnList[i].m_pLeft = &childNodes[2*i];
		btnList[i].m_pRight = &childNodes[2*i+1];
		bool less = btnList[i].m_pLeft->m_nValue <= btnList[i].m_pRight->m_nValue;
		btnList[i].from = less;
		btnList[i].m_nValue = less ?

btnList[i].m_pLeft->m_nValue : btnList[i].m_pRight->m_nValue; } buildTree(btnList, num); } /*返回樹根, 又一次計算數*/ int rebuildTree (BinaryTreeNode* tree) { int result = tree[0].m_nValue; std::stack<BinaryTreeNode*> nodes; BinaryTreeNode* node = &tree[0]; nodes.push(node); while (node->m_pLeft != NULL) { node = node->from ? node->m_pLeft : node->m_pRight; nodes.push(node); } node->m_nValue = INT_MAX; nodes.pop(); while (!nodes.empty()) { node = nodes.top(); nodes.pop(); bool less = node->m_pLeft->m_nValue <= node->m_pRight->m_nValue; node->from = less; node->m_nValue = less ? node->m_pLeft->m_nValue : node->m_pRight->m_nValue; } return result; } /*從上到下打印樹*/ void printTree (BinaryTreeNode* tree) { BinaryTreeNode* node = &tree[0]; std::queue<BinaryTreeNode*> temp1; std::queue<BinaryTreeNode*> temp2; temp1.push(node); while (!temp1.empty()) { node = temp1.front(); if (node->m_pLeft != NULL && node->m_pRight != NULL) { temp2.push(node->m_pLeft); temp2.push(node->m_pRight); } temp1.pop(); if (node->m_nValue == INT_MAX) { std::cout << "MAX" << " "; } else { std::cout << node->m_nValue << " "; } if (temp1.empty()) { std::cout << std::endl; temp1 = temp2; std::queue<BinaryTreeNode*> empty; std::swap(temp2, empty); } } } int main () { std::vector<int> L = {49, 38, 65, 97, 76, 13, 27, 49}; BinaryTreeNode* tree = buildTree(buildList(L), L.size()); std::cout << "Begin : " << std::endl; printTree(tree); std::cout << std::endl; std::vector<int> result; for (std::size_t i=0; i<L.size(); ++i) { int value = rebuildTree (tree); std::cout << "Round[" << i+1 << "] : " << std::endl; printTree(tree); std::cout << std::endl; result.push_back(value); } std::cout << "result : "; for (std::size_t i=0; i<L.size(); ++i) { std::cout << result[i] << " "; } std::cout << std::endl; return 0; }



輸出:

Begin : 
13 
38 13 
38 65 13 27 
49 38 65 97 76 13 27 49 

Round[1] : 
27 
38 27 
38 65 76 27 
49 38 65 97 76 MAX 27 49 

Round[2] : 
38 
38 49 
38 65 76 49 
49 38 65 97 76 MAX MAX 49 

Round[3] : 
49 
49 49 
49 65 76 49 
49 MAX 65 97 76 MAX MAX 49 

Round[4] : 
49 
65 49 
MAX 65 76 49 
MAX MAX 65 97 76 MAX MAX 49 

Round[5] : 
65 
65 76 
MAX 65 76 MAX 
MAX MAX 65 97 76 MAX MAX MAX 

Round[6] : 
76 
97 76 
MAX 97 76 MAX 
MAX MAX MAX 97 76 MAX MAX MAX 

Round[7] : 
97 
97 MAX 
MAX 97 MAX MAX 
MAX MAX MAX 97 MAX MAX MAX MAX 

Round[8] : 
MAX 
MAX MAX 
MAX MAX MAX MAX 
MAX MAX MAX MAX MAX MAX MAX MAX 

result : 13 27 38 49 49 65 76 97 


相關文章
相關標籤/搜索