JavaShuo
欄目
標籤
[arxiv 20200628] Few-Shot Class-Incremental Learning via Feature Space Composition
時間 2021-01-13
標籤
paper
小樣本學習
增量學習
简体版
原文
原文鏈接
論文下載 [1] CVPR 2020: Semantic Drift Compensation for Class-Incremental Learning [2] CVPR 2020: Few-Shot Class-Incremental Learning 什麼是小樣本類別增量學習? 模型首先在一個大規模的基礎數據集 D ( 1 ) D^{(1)} D(1) 上進行訓練,然後會不斷增加新的數據集
>>阅读原文<<
相關文章
1.
[解讀] Unsupervised Feature Learning via Non-Parametric Instance Discrimination
2.
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
3.
Unsupervised Feature Learning via Non-parametric Instance Discrimination
4.
Unsupervised Feature Learning via Non-Parametric Instance Discrimination
5.
Domain agnostic feature learning
6.
Paper Note --- Transfer Learning via Dimensionality Reduction
7.
Few-shot Object Detection via Feature Reweighting
8.
論文閱讀:(AFM)Learning the Weight of Feature Interactions via Attention Networks
9.
論文閱讀:Deep Metric Learning via Lifted Structured Feature Embedding
10.
【論文閱讀】[meta learning]cross-domain few-shot classification via learned feature-wise transformation.
更多相關文章...
•
XSLT
和
元素
-
XSLT 教程
•
PHP is_uploaded_file() 函數
-
PHP參考手冊
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
composition
arxiv
feature
learning
space
feature...setfeature
New Feature
ctrl+space
Deep Learning
Meta-learning
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
NLP《詞彙表示方法(六)ELMO》
2.
必看!RDS 數據庫入門一本通(附網盤鏈接)
3.
阿里雲1C2G虛擬機【99/年】羊毛黨集合啦!
4.
10秒鐘的Cat 6A網線認證儀_DSX2-5000 CH
5.
074《從零開始學Python網絡爬蟲》小記
6.
實例12--會動的地圖
7.
聽薦 | 「談笑風聲」,一次投資圈的嘗試
8.
阿里技術官手寫800多頁PDF總結《精通Java Web整合開發》
9.
設計模式之☞狀態模式實戰
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[解讀] Unsupervised Feature Learning via Non-Parametric Instance Discrimination
2.
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
3.
Unsupervised Feature Learning via Non-parametric Instance Discrimination
4.
Unsupervised Feature Learning via Non-Parametric Instance Discrimination
5.
Domain agnostic feature learning
6.
Paper Note --- Transfer Learning via Dimensionality Reduction
7.
Few-shot Object Detection via Feature Reweighting
8.
論文閱讀:(AFM)Learning the Weight of Feature Interactions via Attention Networks
9.
論文閱讀:Deep Metric Learning via Lifted Structured Feature Embedding
10.
【論文閱讀】[meta learning]cross-domain few-shot classification via learned feature-wise transformation.
>>更多相關文章<<