從WordCount看hadoop執行流程

準備

要執行Map reduce程序,首先得安裝hadoop,hadoop安裝能夠參考hadoop安裝java

啓動hdfs和yarnspring

start-dfs.cmd
start-yarn.cmd

建立待處理數據目錄:apache

hadoop fs -mkdir /wc
hadoop fs -mkdir /wc/in
# 查看目錄
hadoop fs -ls -R /

上傳待處理數據文件:json

hadoop fs -put file:///G:\note\bigdata\hadoop\wordcount\word1.txt /wc/in
hadoop fs -put file:///G:\note\bigdata\hadoop\wordcount\word2.txt /wc/in

其中數據文件內容以下: word1.txt網絡

hello world
hello hadoop

word2.txtapp

hadoop world
hadoop learn

hdfs

WordCount與Map Reduce流程

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.util.StringTokenizer;

public class WordCount {

    public static class TokenizerMapper extends Mapper<Object, Text,Text, IntWritable>{

        private final static IntWritable one = new IntWritable(1);

        private Text word = new Text();

        @Override
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            System.out.println("[map-key]:" + key + "  [map-value]:" + value);
            StringTokenizer stringTokenizer = new StringTokenizer(value.toString());
            while (stringTokenizer.hasMoreTokens()){
                word.set(stringTokenizer.nextToken());
                context.write(word,one);
            }
        }
    }

    public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {

        private IntWritable result = new IntWritable();

        @Override
        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            StringBuffer sb = new StringBuffer();
            for(IntWritable num : values){
                sum += num.get();
                sb.append(num);
                sb.append("、");
            }
            result.set(sum);
            context.write(key,result);
            System.out.println("[reduce-key]:" + key + "  [reduce-values]:" + sb.substring(0,sb.length()-1));
        }
    }

    //job:http://localhost:8088/
    //hdfs:http://localhost:9870/
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration configuration = new Configuration();
        configuration.set("fs.default.name", "hdfs://localhost:9000");
        Job job = Job.getInstance(configuration, "WC");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
//        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        Path inPath = new Path("/wc/in/");
        Path outPath = new Path("/wc/out/");
        FileInputFormat.addInputPath(job, inPath);
        FileOutputFormat.setOutputPath(job, outPath);
        System.exit(job.waitForCompletion(true) ? 0:1);
    }
}

若是輸出目錄已經存在,能夠使用下面的命令刪除:maven

hadoop fs -rm -r /wc/out

咱們先來看一下程序的輸出:ide

[map-key]:0  [map-value]:hadoop world
[map-key]:14  [map-value]:hadoop learn
[map-key]:0  [map-value]:hello world
[map-key]:13  [map-value]:hello hadoop
[reduce-key]:hadoop  [reduce-values]:一、一、1
[reduce-key]:hello  [reduce-values]:一、1
[reduce-key]:learn  [reduce-values]:1
[reduce-key]:world  [reduce-values]:一、1

從輸出咱們能夠推測hadoop的map過程是:hadoop把待處理的文件按行拆分,每一行調用map函數,map函數的key就是每一行的起始位置,值就是這一行的值。函數

map處理以後,再按key-value的形式寫中間值。oop

reduce函數就是處理這些中間過程,參數的key就是map寫入的key,value就是,map以後按key分組的value。

Combin過程

再Map和Reduce中間還能夠加入Combin過程,用於處理中間結果,減小網絡間數據傳輸的數據量。

Map->Reduce->Combin

咱們把上面程序中job.setCombinerClass(IntSumReducer.class);註釋去掉就能夠獲取到有Combiner的輸出:

[map-key]:0  [map-value]:hadoop world
[map-key]:14  [map-value]:hadoop learn
[reduce-key]:hadoop  [reduce-values]:一、1
[reduce-key]:learn  [reduce-values]:1
[reduce-key]:world  [reduce-values]:1

[map-key]:0  [map-value]:hello world
[map-key]:13  [map-value]:hello hadoop
[reduce-key]:hadoop  [reduce-values]:1
[reduce-key]:hello  [reduce-values]:一、1
[reduce-key]:world  [reduce-values]:1

[reduce-key]:hadoop  [reduce-values]:二、1
[reduce-key]:hello  [reduce-values]:2
[reduce-key]:learn  [reduce-values]:1
[reduce-key]:world  [reduce-values]:一、1

從上面的輸出咱們能夠看到,map以後有一個reduce輸出,實際上是combin操做,combin和reduce的區別是combin是在單節點內部執行的,爲了減少中間數據。

注意:combin操做必須知足結合律,例如:

  1. 加法,求總和:a+b+c+d = (a+b) + (c+d)
  2. 最大值:max(a+b+c+d) = max(max(a,b),max(c,d))

均值就不能使用combin操做: (a+b+c+d)/4 明顯不等價於 ((a+b)/2 + (c+d)/2)/2

pom文件

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
        http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>org.curitis</groupId>
    <artifactId>hadoop-learn</artifactId>
    <version>1.0.0</version>

    <properties>
        <spring.version>5.1.3.RELEASE</spring.version>
        <junit.version>4.11</junit.version>
        <hadoop.version>3.0.2</hadoop.version>
        <parquet.version>1.10.1</parquet.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>com.fasterxml.jackson.core</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>com.fasterxml.jackson.core</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>com.fasterxml.jackson.core</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
            </exclusions>
        </dependency>


        <!-- parquet -->
        <dependency>
            <groupId>org.apache.parquet</groupId>
            <artifactId>parquet-hadoop</artifactId>
            <version>${parquet.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.parquet</groupId>
            <artifactId>parquet-column</artifactId>
            <version>${parquet.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.parquet</groupId>
            <artifactId>parquet-common</artifactId>
            <version>${parquet.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.parquet</groupId>
            <artifactId>parquet-encoding</artifactId>
            <version>${parquet.version}</version>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.56</version>
        </dependency>

        <!--test-->
        <dependency>
            <groupId>org.springframework</groupId>
            <artifactId>spring-test</artifactId>
            <version>${spring.version}</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>${junit.version}</version>
            <scope>test</scope>
        </dependency>
    </dependencies>


    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>io.netty</groupId>
                <artifactId>netty-all</artifactId>
                <version>4.1.25.Final</version>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>8</source>
                    <target>8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>
相關文章
相關標籤/搜索