JavaShuo
欄目
標籤
線性模型的最小二乘法擬合(轉)
時間 2021-01-11
欄目
應用數學
简体版
原文
原文鏈接
我們知道在二維座標中,已知兩點就可以確定一個線性方程,如果有n個數據點(x1,y1),(x2,y2),...(xn,yn),那麼就會有n個線性方程,我們使用最小二乘法從這n個方程中擬合出一個最佳的線性方程,也就是求出方程的參數a,b 設某個已知的一元線性方程的表達式爲: y=a+bx 有一組權重相等的測量數據(xi,yi),假定自變量xi的誤差可以忽略,那麼在某個自變量xi下,對應的測量數據爲yi
>>阅读原文<<
相關文章
1.
線性擬合1-最小二乘法
2.
線性模型之最小二乘法
3.
曲線擬合——最小二乘擬合
4.
最小二乘法擬合直線
5.
曲線擬合的線性最小二乘法
6.
C++最小二乘法擬合-(線性擬合和多項式擬合)
7.
最小二乘法的擬合原理
8.
線性最小二乘法擬合實驗及代碼詳解
9.
線性最小二乘擬合算法實現-附C++源碼
10.
halcon之最小二乘擬合直線
更多相關文章...
•
ASP.NET MVC - 模型
-
ASP.NET 教程
•
C# 類型轉換
-
C#教程
•
Kotlin學習(二)基本類型
•
委託模式
相關標籤/搜索
最小二乘
曲線擬合
混合模型
模型轉化
乘法
合法性
擬合
模擬
轉型
線型
應用數學
PHP 7 新特性
NoSQL教程
MySQL教程
算法
學習路線
設計模式
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
如何將PPT某一頁幻燈片導出爲高清圖片
2.
Intellij IDEA中使用Debug調試
3.
build項目打包
4.
IDEA集成MAVEN項目極簡化打包部署
5.
eclipse如何導出java工程依賴的所有maven管理jar包(簡單明瞭)
6.
新建的Spring項目無法添加class,依賴下載失敗解決:Maven環境配置
7.
記在使用vue-cli中使用axios的心得
8.
分享提高自己作品UI設計形式感的幾個小技巧!
9.
造成 nginx 403 forbidden 的幾種原因
10.
AOP概述(什麼是AOP?)——Spring AOP(一)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
線性擬合1-最小二乘法
2.
線性模型之最小二乘法
3.
曲線擬合——最小二乘擬合
4.
最小二乘法擬合直線
5.
曲線擬合的線性最小二乘法
6.
C++最小二乘法擬合-(線性擬合和多項式擬合)
7.
最小二乘法的擬合原理
8.
線性最小二乘法擬合實驗及代碼詳解
9.
線性最小二乘擬合算法實現-附C++源碼
10.
halcon之最小二乘擬合直線
>>更多相關文章<<