TreeMap(紅黑樹)源碼分析

1. HashMap.Entry(紅黑樹節點)

private static final boolean RED   = false;
private static final boolean BLACK = true;
static final class Entry<K,V> implements Map.Entry<K,V> {
    K key; //
    V value; //
    Entry<K,V> left; // 左孩子
    Entry<K,V> right; // 右孩子
    Entry<K,V> parent; // 父節點
    boolean color = BLACK; // 顏色

    Entry(K key, V value, Entry<K,V> parent) {
        this.key = key;
        this.value = value;
        this.parent = parent;
    }

    ... ...
}

2. 構建TreeMap

private final Comparator<? super K> comparator; // 比較器
private transient Entry<K,V> root; // 紅黑樹根節點
private transient int size = 0; // 紅黑樹節點總數
private transient int modCount = 0; // // 調用put、remove、clear...方法時:modCount++(PrivateEntryIterator相關)

public TreeMap() { // 天然排序(key實現Comparable)
    comparator = null; }

public TreeMap(Comparator<? super K> comparator) { // 指定比較器
    this.comparator = comparator; }

public TreeMap(Map<? extends K, ? extends V> m) { // 用其它Map構建紅黑樹
    comparator = null;
 putAll(m);
}

public TreeMap(SortedMap<K, ? extends V> m) { // 用其它有序Map構建紅黑樹
    comparator = m.comparator();
    try {
        buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
    } catch (java.io.IOException cannotHappen) {
    } catch (ClassNotFoundException cannotHappen) {
    }
}
public void putAll(Map<? extends K, ? extends V> map) { 
    int mapSize = map.size();
    if (size==0 && mapSize!=0 && map instanceof SortedMap) { // map爲有序Map
        Comparator<?> c = ((SortedMap<?,?>)map).comparator(); if (c == comparator || (c != null && c.equals(comparator))) {
            ++modCount;
            try {
                buildFromSorted(mapSize, map.entrySet().iterator(), null, null);
            } catch (java.io.IOException cannotHappen) {
            } catch (ClassNotFoundException cannotHappen) {
            }
            return;
        }
    }
    super.putAll(map); // 依次從map中取元素添加到當前紅黑樹中
}

private void buildFromSorted(int size, Iterator<?> it, java.io.ObjectInputStream str, V defaultVal)
    throws java.io.IOException, ClassNotFoundException {
    this.size = size;
    root = buildFromSorted(0, 0, size-1, computeRedLevel(size), it, str, defaultVal);
}

private final Entry<K,V> buildFromSorted(int level, int lo, int hi, int redLevel, Iterator<?> it, java.io.ObjectInputStream str, V defaultVal)
    throws  java.io.IOException, ClassNotFoundException {
    if (hi < lo) return null;

    int mid = (lo + hi) >>> 1; // 中置位

    Entry<K,V> left  = null;
    if (lo < mid) // 構建左子樹
        left = buildFromSorted(level+1, lo, mid - 1, redLevel, it, str, defaultVal);

    K key;
    V value;
    if (it != null) { // 從迭代器中獲取元素
        if (defaultVal==null) {
            Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
            key = (K)entry.getKey();
            value = (V)entry.getValue();
        } else {
            key = (K)it.next();
            value = defaultVal;
        }
 } else { // 從輸入流中獲取元素
        key = (K) str.readObject();
        value = (defaultVal != null ? defaultVal : (V) str.readObject());
    }

 Entry<K,V> middle =  new Entry<>(key, value, null); // 中置位節點

    if (level == redLevel)
        middle.color = RED;

    if (left != null) { // 存在左子樹
        middle.left = left;
        left.parent = middle;
    }

    if (mid < hi) { // 構建右子樹
        Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel, it, str, defaultVal);         middle.right = right;
        right.parent = middle;
    }

    return middle;
}

private static int computeRedLevel(int sz) { // 樹中節點全滿的最後一層
    int level = 0;
    for (int m = sz - 1; m >= 0; m = m / 2 - 1)
        level++;
    return level;
}

3. get

在查找過程當中,採用比較器或天然順序比較節點大小:java

1‘ 指定比較器時,優先使用比較器比較節點大小app

2' 未指定比較器時,待查找鍵類型必須實現Comparable接口oop

public V get(Object key) {
    Entry<K,V> p = getEntry(key);
    return (p==null ? null : p.value);
}

final Entry<K,V> getEntry(Object key) {
    if (comparator != null)
        return getEntryUsingComparator(key);
    if (key == null)
        throw new NullPointerException();
 Comparable<? super K> k = (Comparable<? super K>) key;     Entry<K,V> p = root;
    while (p != null) {
        int cmp = k.compareTo(p.key); if (cmp < 0) // 左拐
            p = p.left;
        else if (cmp > 0) // 右拐
            p = p.right;
        else // 找到節點
            return p;
    }
    return null;
}

final Entry<K,V> getEntryUsingComparator(Object key) {
    K k = (K) key;
    Comparator<? super K> cpr = comparator;
    if (cpr != null) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = cpr.compare(k, p.key);
            if (cmp < 0) // 左拐
                p = p.left;
            else if (cmp > 0) // 右拐
                p = p.right;
            else // 找到節點
                return p;
        }
    }
    return null;
}

4. ceilingEntry和floorEntry

final int compare(Object k1, Object k2) { // 優先用comparator比較節點大小
    return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2) : comparator.compare((K)k1, (K)k2);
}

public Map.Entry<K,V> ceilingEntry(K key) {
    return exportEntry(getCeilingEntry(key)); }
final Entry<K,V> getCeilingEntry(K key) {
 Entry<K,V> p = root;
    while (p != null) {
        int cmp = compare(key, p.key); if (cmp < 0) {
            if (p.left != null) // 左子樹存在則左拐
                p = p.left;
            else // 左子樹不存在則當前節點爲ceiling
                return p;
        } else if (cmp > 0) {
            if (p.right != null) { // 右子樹存在則右拐
                p = p.right;
 } else { // 右子樹不存在,則從當前節點往根節點走,尋找首個比當前節點大的節點(可能不存在)
                Entry<K,V> parent = p.parent;
                Entry<K,V> ch = p;
                while (parent != null && ch == parent.right) {
                    ch = parent;
                    parent = parent.parent;
                }
                return parent;
            }
 } else // key相等的節點爲ceiling
            return p;
    }
    return null;
}

public Map.Entry<K,V> floorEntry(K key) {
    return exportEntry(getFloorEntry(key)); }

final Entry<K,V> getFloorEntry(K key) {
    Entry<K,V> p = root;
    while (p != null) {
        int cmp = compare(key, p.key);
        if (cmp > 0) {
            if (p.right != null) // 右子樹存在則右拐
                p = p.right;
            else // 右子樹不存在則當前節點爲floor
                return p;
        } else if (cmp < 0) {
            if (p.left != null) { // 左子樹存在則左拐
                p = p.left;
 } else { // 左子樹不存在,則從當前節點往根節點走,尋找首個比當前節點小的節點(可能不存在)
                Entry<K,V> parent = p.parent;
                Entry<K,V> ch = p;
                while (parent != null && ch == parent.left) {
                    ch = parent;
                    parent = parent.parent;
                }
                return parent;
            }
 } else // key相等的節點爲floor
            return p;

    }
    return null; // 紅黑樹中不存在<=key的節點
}
static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
    return (e == null) ? null : new AbstractMap.SimpleImmutableEntry<>(e);
}

5. containsKey和containsValue

containsKey:getEntry返回非空ui

containsValue:從第一個節點開始,遍歷整顆紅黑樹this

public boolean containsKey(Object key) {
    return getEntry(key) != null;
}

public boolean containsValue(Object value) {
    for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) if (valEquals(value, e.value))
            return true;
    return false;
}

public Map.Entry<K,V> firstEntry() { // 最小節點
    return exportEntry(getFirstEntry());
}

final Entry<K,V> getFirstEntry() {
    Entry<K,V> p = root;
    if (p != null)
        while (p.left != null) // 一路左拐
            p = p.left;
    return p;
}

static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) { // 節點t的後置節點 if (t == null) return null; else if (t.right != null) { // 右子樹存在,則一步右拐再一路左拐 Entry<K,V> p = t.right; while (p.left != null) p = p.left; return p; } else { // 右子樹不存在,則從當前節點往根節點走,尋找首個比當前節點大的節點(可能不存在) Entry<K,V> p = t.parent; Entry<K,V> ch = t; while (p != null && ch == p.right) { ch = p; p = p.parent; } return p; } }

6. put

1' 若已存在相同鍵的節點,則設置節點新值spa

2' 若不存在相同鍵的節點,則插入(黑色)節點,再以該節點爲支點進行平衡調整code

public V put(K key, V value) {
    Entry<K,V> t = root;
    if (t == null) { // 紅黑樹爲空
 compare(key, key); // 可能comparator爲空,且key所屬類也未實現Comparable接口
        root = new Entry<>(key, value, null);
        size = 1;
        modCount++;
        return null;
    }
    int cmp;
    Entry<K,V> parent;
    Comparator<? super K> cpr = comparator;
    if (cpr != null) { // comparator不爲空
        do {
            parent = t;
            cmp = cpr.compare(key, t.key);
            if (cmp < 0) // 左拐
                t = t.left;
            else if (cmp > 0) // 右拐
                t = t.right;
            else // 存在key相等的節點
                return t.setValue(value);
        } while (t != null);
    }
    else { // comparator爲空
        if (key == null)
            throw new NullPointerException();
        Comparable<? super K> k = (Comparable<? super K>) key;
        do {
            parent = t;
            cmp = k.compareTo(t.key);
            if (cmp < 0) // 左拐
                t = t.left;
            else if (cmp > 0) // 右拐
                t = t.right;
            else // 存在key相等的節點
                return t.setValue(value);
        } while (t != null);
    }
 Entry<K,V> e = new Entry<>(key, value, parent);
    if (cmp < 0)
        parent.left = e;
    else
        parent.right = e;
    fixAfterInsertion(e); // 插入新節點後作平衡調整
    size++;
    modCount++;
    return null;
}

private void fixAfterInsertion(Entry<K,V> x) {
    x.color = RED;
    // x不爲空 && x不爲根節點 && x父節點爲紅色
    while (x != null && x != root && x.parent.color == RED) { // 當前節點x
        if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { // x父節點是x爺爺節點的左孩子
            Entry<K,V> y = rightOf(parentOf(parentOf(x))); // x叔叔節點(可能不存在)
            if (colorOf(y) == RED) { // x叔叔節點爲紅色
                setColor(parentOf(x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf(parentOf(x)), RED);
                x = parentOf(parentOf(x)); // x爺爺節點做爲當前節點:continue
            } else { // x叔叔節點爲黑色
                if (x == rightOf(parentOf(x))) { // x是父節點的右孩子
                    x = parentOf(x);
                    rotateLeft(x);
                }
                // 此時,x是父節點的左孩子
                setColor(parentOf(x), BLACK);
                setColor(parentOf(parentOf(x)), RED);
                rotateRight(parentOf(parentOf(x)));
            }
        } else { // x父節點是x爺爺節點的右孩子 || x爺爺節點不存在
            Entry<K,V> y = leftOf(parentOf(parentOf(x))); // x叔叔節點(可能不存在)
            if (colorOf(y) == RED) { // x叔叔節點爲紅色
                setColor(parentOf(x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf(parentOf(x)), RED);
                x = parentOf(parentOf(x)); // x爺爺節點做爲當前節點:continue
            } else { // x叔叔節點爲黑色
                if (x == leftOf(parentOf(x))) { // x是父節點的左孩子
                    x = parentOf(x);
                    rotateRight(x);
                }
                // 此時,x是父節點的右孩子
                setColor(parentOf(x), BLACK);
                setColor(parentOf(parentOf(x)), RED);
                rotateLeft(parentOf(parentOf(x)));
            }
        }
    }
    root.color = BLACK; // 根節點置爲黑色
}

private static <K,V> boolean colorOf(Entry<K,V> p) { // 不存在的節點(如葉子節點)爲黑色
    return (p == null ? BLACK : p.color);
}

private static <K,V> void setColor(Entry<K,V> p, boolean c) { // p不存在:noop
    if (p != null)
        p.color = c;
}

private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) { // p不存在則p父節點也不存在
    return (p == null ? null: p.parent);
}

private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) { // p不存在則p左孩子也不存在
    return (p == null) ? null: p.left;
}

private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) { // p不存在則p右孩子也不存在
    return (p == null) ? null: p.right;
}

private void rotateLeft(Entry<K,V> p) { // 以p爲支點左旋
    if (p != null) {
        Entry<K,V> r = p.right; // p右孩子(必須存在)
        // 1. r左孩子 -> p右孩子
        p.right = r.left;
        if (r.left != null) r.left.parent = p;

        r.parent = p.parent;
        if (p.parent == null)
            root = r; // 2. r -> 根節點
        else if (p.parent.left == p)
            p.parent.left = r; // 2. r -> p父節點的左孩子
        else
            p.parent.right = r; // 2. r -> p父節點的右孩子
        // 3. p -> r的左孩子
        r.left = p;
        p.parent = r;
    }
}

private void rotateRight(Entry<K,V> p) { // 以p爲支點右旋
    if (p != null) {
        Entry<K,V> l = p.left; // p左孩子(必須存在)
        // 1. l右孩子 -> p左孩子
        p.left = l.right;
        if (l.right != null) l.right.parent = p;
        
        l.parent = p.parent;
        if (p.parent == null)
            root = l; // 2. l -> 根節點
        else if (p.parent.right == p)
            p.parent.right = l; // 2. l -> p父節點的右孩子
        else
            p.parent.left = l; // 2. l -> p父節點的左孩子
        // 3. p -> r的右孩子
        l.right = p;
        p.parent = l;
    }
}

7. remove

1' 若未找到待刪除節點,則直接返回blog

2' 若待刪除節點左右子樹非空,則將successor的鍵值保存到待刪除節點,待刪除節點 = successor排序

3' 若待刪除節點左右子樹皆空繼承

  1'' 待刪除節點爲黑色,以該節點爲支點進行平衡調整,再刪除該節點

  2’‘ 待刪除節點爲紅色,直接刪除該節點

4' 若待刪除節點左右子樹非皆空

  1'' 待刪除節點爲黑色,則刪除該節點,再以該節點左(右)孩子爲支點進行平衡調整

  2'' 待刪除節點爲紅色,直接刪除該節點

public V remove(Object key) {
    Entry<K,V> p = getEntry(key); // 尋找節點
    if (p == null)
        return null;
    V oldValue = p.value;
    deleteEntry(p);
    return oldValue;
}

private void deleteEntry(Entry<K,V> p) {
    modCount++;
    size--;

    if (p.left != null && p.right != null) { // p左右子樹非空
        Entry<K,V> s = successor(p);
        p.key = s.key;
        p.value = s.value;
        p = s;
    }
    Entry<K,V> replacement = (p.left != null ? p.left : p.right); // p的左(右)孩子
    if (replacement != null) { // p存在左(右)孩子,刪除p後進行平衡調整
        replacement.parent = p.parent;
        if (p.parent == null)
            root = replacement;
        else if (p == p.parent.left)
            p.parent.left  = replacement;
        else
            p.parent.right = replacement;
        p.left = p.right = p.parent = null;

        if (p.color == BLACK)             fixAfterDeletion(replacement);
 } else if (p.parent == null) { // p爲紅黑樹惟一節點
        root = null;
 } else { // p沒有孩子節點,平衡調整完後再刪除p
        if (p.color == BLACK)             fixAfterDeletion(p);
        if (p.parent != null) {
            if (p == p.parent.left)
                p.parent.left = null;
            else if (p == p.parent.right)
                p.parent.right = null;
            p.parent = null;
        }
    }
}

private void fixAfterDeletion(Entry<K,V> x) {
    // x不爲根節點 && x爲黑色
    while (x != root && colorOf(x) == BLACK) { // 當前節點x
        if (x == leftOf(parentOf(x))) { // x是x父節點的左孩子
            Entry<K,V> sib = rightOf(parentOf(x)); // x兄弟節點(可能不存在)
            if (colorOf(sib) == RED) { // x兄弟節點爲紅色
                setColor(sib, BLACK);
                setColor(parentOf(x), RED);
                rotateLeft(parentOf(x));
                sib = rightOf(parentOf(x));
            }
            // 此時,x兄弟節點爲黑色
            // x兄弟節點:左孩子黑色,右孩子黑色
            if (colorOf(leftOf(sib))  == BLACK && colorOf(rightOf(sib)) == BLACK) {
                setColor(sib, RED);
                x = parentOf(x); // x父節點做爲當前節點:continue
            } else {
                // x兄弟節點:左孩子紅色,右孩子黑色
                if (colorOf(rightOf(sib)) == BLACK) {
                    setColor(leftOf(sib), BLACK);
                    setColor(sib, RED);
                    rotateRight(sib);
                    sib = rightOf(parentOf(x));
                }
                // 此時,x兄弟節點爲黑色,x兄弟節點的右孩子爲紅色
                setColor(sib, colorOf(parentOf(x)));
                setColor(parentOf(x), BLACK);
                setColor(rightOf(sib), BLACK);
                rotateLeft(parentOf(x));
                x = root;
            }
        } else { // x是x父節點的右孩子
            Entry<K,V> sib = leftOf(parentOf(x)); // x兄弟節點(可能不存在)
            if (colorOf(sib) == RED) { // x兄弟節點爲紅色
                setColor(sib, BLACK);
                setColor(parentOf(x), RED);
                rotateRight(parentOf(x));
                sib = leftOf(parentOf(x));
            }
            // 此時,x兄弟節點爲黑色
            // x兄弟節點:左孩子黑色,右孩子黑色
            if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) {
                setColor(sib, RED);
                x = parentOf(x); // x父節點做爲當前節點:continue
            } else {
                // x兄弟節點:左孩子黑色,右孩子紅色
                if (colorOf(leftOf(sib)) == BLACK) {
                    setColor(rightOf(sib), BLACK);
                    setColor(sib, RED);
                    rotateLeft(sib);
                    sib = leftOf(parentOf(x));
                }
                // 此時,x兄弟節點爲黑色,x兄弟節點的左孩子爲紅色
                setColor(sib, colorOf(parentOf(x)));
                setColor(parentOf(x), BLACK);
                setColor(leftOf(sib), BLACK);
                rotateRight(parentOf(x));
                x = root;
            }
        }
    }
    setColor(x, BLACK);
}

8. entrySet、keySet和values

依次返回EntrySet、KeySet、Values

1' EntrySet、KeySet繼承自AbstractSet,而Values繼承自AbstractCollection

2' EntrySet、KeySet、Values對應的迭代器分別爲:EntryIterator、KeyIterator、ValueIterator

3' EntryIterator、KeyIterator、ValueIterator均繼承自PrivateEntryIterator,依賴PrivateEntryIterator.nextEntry分別對Entry、K、V進行迭代

4' 對EntrySet、KeySet、Values,及各自迭代器,調用remove方法,都將最終調用TreeMap的deleteEntry方法刪除節點

5' 對EntrySet、KeySet、Values,不能調用add方法添加元素,不然將拋出UnsupportedOperationException

private transient EntrySet entrySet; private transient KeySet<K> navigableKeySet; public Set<Map.Entry<K,V>> entrySet() { EntrySet es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } public Set<K> keySet() { return navigableKeySet(); } public NavigableSet<K> navigableKeySet() { KeySet<K> nks = navigableKeySet; return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this)); } Iterator<K> keyIterator() { return new KeyIterator(getFirstEntry()); } public Collection<V> values() { Collection<V> vs = values; return (vs != null) ? vs : (values = new Values()); } class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(getFirstEntry()); } public boolean contains(Object o); // TreeMap.this.getEntry
    public boolean remove(Object o); // TreeMap.this.deleteEntry // add方法繼承自AbstractCollection:throw UnsupportedOperationException
 ... ... } static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> { private final NavigableMap<E, ?> m; KeySet(NavigableMap<E,?> map) { m = map; } public Iterator<E> iterator() { if (m instanceof TreeMap) return ((TreeMap<E,?>)m).keyIterator(); else
            return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator(); } public boolean contains(Object o); // TreeMap.this.containsKey
    public boolean remove(Object o); // TreeMap.this.remove // add方法繼承自AbstractCollection:throw UnsupportedOperationException
} class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return new ValueIterator(getFirstEntry()); } public boolean contains(Object o); // TreeMap.this.containsValue
    public boolean remove(Object o); // TreeMap.this.deleteEntry  // add方法繼承自AbstractCollection:throw UnsupportedOperationException ... ... }
abstract class PrivateEntryIterator<T> implements Iterator<T> {
 Entry<K,V> next; // 下一節點
    Entry<K,V> lastReturned; // 當前節點
    int expectedModCount;

    PrivateEntryIterator(Entry<K,V> first) {
        expectedModCount = modCount;
        lastReturned = null;
 next = first;     }

    public final boolean hasNext(); // next != null
    final Entry<K,V> nextEntry(); // TreeMap.this.successor
    final Entry<K,V> prevEntry(); // TreeMap.this.predecessor
    public void remove(); // TreeMap.this.deleteEntry
}

final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
    EntryIterator(Entry<K,V> first) { super(first); }
    public Map.Entry<K,V> next() { return nextEntry(); } }

final class ValueIterator extends PrivateEntryIterator<V> {
    ValueIterator(Entry<K,V> first) { super(first); }
    public V next() { return nextEntry().value; } }

final class KeyIterator extends PrivateEntryIterator<K> {
    KeyIterator(Entry<K,V> first) { super(first); }
    public K next() { return nextEntry().key; } }

9. tailMap

1’ tailMap是一個設置低位鍵(包括低位邊界),而未設置高位鍵的NavigableSubMap

2' 在>=低位鍵的範圍內,能夠對tailMap進行get、put、remove等操做

public SortedMap<K,V> tailMap(K fromKey) {
    return tailMap(fromKey, true);
}

public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
    return new AscendingSubMap<>(this,
                                 false, fromKey, inclusive, // 設置低位鍵
                                 true,  null,    true); // 未設置高位鍵
}

static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
    AscendingSubMap(TreeMap<K,V> m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) { super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
    }

    ... ...
}

abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V> implements NavigableMap<K,V>, java.io.Serializable {
    final TreeMap<K,V> m;
    final K lo, hi; // 高低鍵
    final boolean fromStart, toEnd; // 是否設置高低鍵
    final boolean loInclusive, hiInclusive; // 是否包含高低邊界

    NavigableSubMap(TreeMap<K,V> m,
                    boolean fromStart, K lo, boolean loInclusive,
                    boolean toEnd,     K hi, boolean hiInclusive) {
        if (!fromStart && !toEnd) {
            if (m.compare(lo, hi) > 0)
                throw new IllegalArgumentException("fromKey > toKey");
        } else {
            if (!fromStart) // type check
                m.compare(lo, lo);
            if (!toEnd)
                m.compare(hi, hi);
        }
        this.m = m;
        this.fromStart = fromStart;
        this.lo = lo;
        this.loInclusive = loInclusive;
        this.toEnd = toEnd;
        this.hi = hi;
        this.hiInclusive = hiInclusive;
    }

    final boolean tooLow(Object key) {
        if (!fromStart) { // 設置了低位鍵
            int c = m.compare(key, lo);
            if (c < 0 || (c == 0 && !loInclusive))
                return true;
        }
        return false;
    }

    final boolean tooHigh(Object key) {
        if (!toEnd) { // 設置了高位鍵
            int c = m.compare(key, hi);
            if (c > 0 || (c == 0 && !hiInclusive))
                return true;
        }
        return false;
    }

    final boolean inRange(Object key) {
        return !tooLow(key) && !tooHigh(key); // 在高低鍵範圍內
    }

    public final V put(K key, V value) {
        if (!inRange(key)) // 範圍檢查
            throw new IllegalArgumentException("key out of range");
        return m.put(key, value);
    }

    public final V get(Object key) {
        return !inRange(key)/*範圍檢查*/ ? null :  m.get(key);
    }

    public final V remove(Object key) {
        return !inRange(key)/*範圍檢查*/ ? null : m.remove(key);
    }

    ... ...
}
相關文章
相關標籤/搜索