JavaShuo
欄目
標籤
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
時間 2021-07-14
原文
原文鏈接
Abstract 神經網絡的研究重點從算法的研究過度到合適(suitable)且大量訓練數據的創建。傳統的計算機視覺任務通過人工標註的網絡數據來獲得訓練集。對於光流和場景流問題,由於無法人爲進入每個像素精確光流場的限制,所以通過人工標註數據集的方法不可行。此論文提倡使用合成數據集來訓練神經網絡,並以此實現光流以及場景流的計算。此論文利用不同的合成訓練集來訓練神經網絡,並評估了不同合
>>阅读原文<<
相關文章
1.
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
2.
What are some good books/papers for learning deep learning?
3.
ProFlow: Learning to Predict Optical Flow
4.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
5.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
6.
FlowNet: Learning Optical Flow with Convolutional Networks
7.
FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks
8.
論文解讀2-Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation
9.
人羣計數:SFCN--Learning from Synthetic Data for Crowd Counting in the Wild
10.
Game Development Theory 1:What makes a game ‘good’?
更多相關文章...
•
XSL-FO flow 對象
-
XSL-FO 教程
•
XML DOM data 屬性
-
XML DOM 教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
flow
synthetic
good
optical
makes
estimation
disparity
training
learning
data
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正確理解商業智能 BI 的價值所在
2.
解決梯度消失梯度爆炸強力推薦的一個算法-----LSTM(長短時記憶神經網絡)
3.
解決梯度消失梯度爆炸強力推薦的一個算法-----GRU(門控循環神經⽹絡)
4.
HDU4565
5.
算概率投硬幣
6.
密碼算法特性
7.
DICOMRT-DiTools:clouddicom源碼解析(1)
8.
HDU-6128
9.
計算機網絡知識點詳解(持續更新...)
10.
hods2896(AC自動機)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
2.
What are some good books/papers for learning deep learning?
3.
ProFlow: Learning to Predict Optical Flow
4.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
5.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
6.
FlowNet: Learning Optical Flow with Convolutional Networks
7.
FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks
8.
論文解讀2-Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation
9.
人羣計數:SFCN--Learning from Synthetic Data for Crowd Counting in the Wild
10.
Game Development Theory 1:What makes a game ‘good’?
>>更多相關文章<<