JavaShuo
欄目
標籤
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
時間 2021-07-14
原文
原文鏈接
Abstract 神經網絡的研究重點從算法的研究過度到合適(suitable)且大量訓練數據的創建。傳統的計算機視覺任務通過人工標註的網絡數據來獲得訓練集。對於光流和場景流問題,由於無法人爲進入每個像素精確光流場的限制,所以通過人工標註數據集的方法不可行。此論文提倡使用合成數據集來訓練神經網絡,並以此實現光流以及場景流的計算。此論文利用不同的合成訓練集來訓練神經網絡,並評估了不同合
>>阅读原文<<
相關文章
1.
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
2.
What are some good books/papers for learning deep learning?
3.
ProFlow: Learning to Predict Optical Flow
4.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
5.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
6.
FlowNet: Learning Optical Flow with Convolutional Networks
7.
FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks
8.
論文解讀2-Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation
9.
人羣計數:SFCN--Learning from Synthetic Data for Crowd Counting in the Wild
10.
Game Development Theory 1:What makes a game ‘good’?
更多相關文章...
•
XSL-FO flow 對象
-
XSL-FO 教程
•
XML DOM data 屬性
-
XML DOM 教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
flow
synthetic
good
optical
makes
estimation
disparity
training
learning
data
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
shell編譯問題
2.
mipsel 編譯問題
3.
添加xml
4.
直方圖均衡化
5.
FL Studio鋼琴卷軸之畫筆工具
6.
中小企業爲什麼要用CRM系統
7.
Github | MelGAN 超快音頻合成源碼開源
8.
VUE生產環境打包build
9.
RVAS(rare variant association study)知識
10.
不看後悔系列!DTS 控制檯入門一本通(附網盤鏈接)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
2.
What are some good books/papers for learning deep learning?
3.
ProFlow: Learning to Predict Optical Flow
4.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
5.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
6.
FlowNet: Learning Optical Flow with Convolutional Networks
7.
FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks
8.
論文解讀2-Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation
9.
人羣計數:SFCN--Learning from Synthetic Data for Crowd Counting in the Wild
10.
Game Development Theory 1:What makes a game ‘good’?
>>更多相關文章<<