JavaShuo
欄目
標籤
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
時間 2021-07-14
原文
原文鏈接
引:stereo傷不起,樣本要自己造,怎麼才能做出有效的逼真的讓模型很牛的樣本呢? 對於分開的數據集分階段的訓練要比光訓練一個或者混起來一起訓練效果要好 通過特別複雜的光線使得數據集看起來更加的現實。這樣效果並不是很好,除非測試數據也是超現實光照~ 在訓練的時候模擬該相機的缺點,將會提升網絡測試該相機中圖像的性能。 以上就是所有的數據,可見虛擬數據多,真實數據少 以上就是這些數據的樣子,一般用的比
>>阅读原文<<
相關文章
1.
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
2.
What are some good books/papers for learning deep learning?
3.
ProFlow: Learning to Predict Optical Flow
4.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
5.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
6.
FlowNet: Learning Optical Flow with Convolutional Networks
7.
FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks
8.
論文解讀2-Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation
9.
人羣計數:SFCN--Learning from Synthetic Data for Crowd Counting in the Wild
10.
Game Development Theory 1:What makes a game ‘good’?
更多相關文章...
•
XSL-FO flow 對象
-
XSL-FO 教程
•
XML DOM data 屬性
-
XML DOM 教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
flow
synthetic
good
optical
makes
estimation
disparity
training
learning
data
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
升級Gradle後報錯Gradle‘s dependency cache may be corrupt (this sometimes occurs
2.
Smarter, Not Harder
3.
mac-2019-react-native 本地環境搭建(xcode-11.1和android studio3.5.2中Genymotion2.12.1 和VirtualBox-5.2.34 )
4.
查看文件中關鍵字前後幾行的內容
5.
XXE萌新進階全攻略
6.
Installation failed due to: ‘Connection refused: connect‘安卓studio端口占用
7.
zabbix5.0通過agent監控winserve12
8.
IT行業UI前景、潛力如何?
9.
Mac Swig 3.0.12 安裝
10.
Windows上FreeRDP-WebConnect是一個開源HTML5代理,它提供對使用RDP的任何Windows服務器和工作站的Web訪問
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
2.
What are some good books/papers for learning deep learning?
3.
ProFlow: Learning to Predict Optical Flow
4.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
5.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
6.
FlowNet: Learning Optical Flow with Convolutional Networks
7.
FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks
8.
論文解讀2-Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation
9.
人羣計數:SFCN--Learning from Synthetic Data for Crowd Counting in the Wild
10.
Game Development Theory 1:What makes a game ‘good’?
>>更多相關文章<<