1、解析庫之bs4html
''' pip3 install beautifulsoup4 # 安裝bs4 pip3 install lxml # 下載lxml解析器 ''' html_doc = """ <html><head><title>The Dormouse's story</title></head> <body> <p class="sister"><b>$37</b></p> <p class="story" id="p">Once upon a time there were three little sisters; and their names were <a href="http://example.com/elsie" class="sister" >Elsie</a>, <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>; and they lived at the bottom of a well.</p> <p class="story">...</p> """ # 從bs4中導入BeautifulSoup from bs4 import BeautifulSoup # 調用BeautifulSoup實例化獲得一個soup對象 # 參數一: 解析文本 # 參數二: # 參數二: 解析器(html.parser、lxml...) soup = BeautifulSoup(html_doc, 'lxml') print(soup) print('*' * 100) print(type(soup)) print('*' * 100) # 文檔美化 html = soup.prettify() print(html)
2、bs4之遍歷文檔樹python
html_doc = """<html><head><title>The Dormouse's story</title></head><body><p class="sister"><b>$37</b></p><p class="story" id="p">Once upon a time there were three little sisters; and their names were<b>tank</b><a href="http://example.com/elsie" class="sister" >Elsie</a>,<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;and they lived at the bottom of a well.<hr></hr></p><p class="story">...</p>""" from bs4 import BeautifulSoup soup = BeautifulSoup(html_doc, 'lxml') ''' 遍歷文檔樹: 一、直接使用 二、獲取標籤的名稱 三、獲取標籤的屬性 四、獲取標籤的內容 五、嵌套選擇 六、子節點、子孫節點 七、父節點、祖先節點 八、兄弟節點 ''' # 一、直接使用 print(soup.p) # 查找第一個p標籤 print(soup.a) # 查找第一個a標籤 # 二、獲取標籤的名稱 print(soup.head.name) # 獲取head標籤的名稱 # 三、獲取標籤的屬性 print(soup.a.attrs) # 獲取a標籤中的全部屬性 print(soup.a.attrs['href']) # 獲取a標籤中的href屬性 # 四、獲取標籤的內容 print(soup.p.text) # $37 # 五、嵌套選擇 print(soup.html.head) # 六、子節點、子孫節點 print(soup.body.children) # body全部子節點,返回的是迭代器對象 print(list(soup.body.children)) # 強轉成列表類型 print(soup.body.descendants) # 子孫節點 print(list(soup.body.descendants)) # 子孫節點 # 七、父節點、祖先節點 print(soup.p.parent) # 獲取p標籤的父親節點 # 返回的是生成器對象 print(soup.p.parents) # 獲取p標籤全部的祖先節點 print(list(soup.p.parents)) # 八、兄弟節點 # 找下一個兄弟 print(soup.p.next_sibling) # 找下面全部的兄弟,返回的是生成器 print(soup.p.next_siblings) print(list(soup.p.next_siblings)) # 找上一個兄弟 print(soup.a.previous_sibling) # 找到第一個a標籤的上一個兄弟節點 # 找到a標籤上面的全部兄弟節點 print(soup.a.previous_siblings) # 返回的是生成器 print(list(soup.a.previous_siblings))
3、bs4之搜索文檔樹web
html_doc = """<html><head><title>The Dormouse's story</title></head><body><p class="sister"><b>$37</b></p><p class="story" id="p">Once upon a time there were three little sisters; and their names were<b>tank</b><a href="http://example.com/elsie" class="sister" >Elsie</a>,<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;and they lived at the bottom of a well.<hr></hr></p><p class="story">...</p>""" ''' 搜索文檔樹: find() 找一個 find_all() 找多個 標籤查找與屬性查找: 標籤: name 屬性匹配 attrs 屬性查找匹配 text 文本匹配 - 字符串過濾器 字符串全局匹配 - 正則過濾器 re模塊匹配 - 列表過濾器 列表內的數據匹配 - bool過濾器 True匹配 - 方法過濾器 用於一些要的屬性以及不須要的屬性查找。 屬性: - class_ - id ''' from bs4 import BeautifulSoup soup = BeautifulSoup(html_doc, 'lxml') # # 字符串過濾器 # # name # p_tag = soup.find(name='p') # print(p_tag) # 根據文本p查找某個標籤 # # 找到全部標籤名爲p的節點 # tag_s1 = soup.find_all(name='p') # print(tag_s1) # # # # attrs # # 查找第一個class爲sister的節點 # p = soup.find(attrs={"class": "sister"}) # print(p) # # 查找全部class爲sister的節點 # tag_s2 = soup.find_all(attrs={"class": "sister"}) # print(tag_s2) # # # # text # text = soup.find(text="$37") # print(text) # # # # 配合使用: # # 找到一個id爲link二、文本爲Lacie的a標籤 # a_tag = soup.find(name="a", attrs={"id": "link2"}, text="Lacie") # print(a_tag) # # 正則過濾器 # import re # # name # p_tag = soup.find(name=re.compile('p')) # print(p_tag) # 列表過濾器 # import re # # name # tags = soup.find_all(name=['p', 'a', re.compile('html')]) # print(tags) # - bool過濾器 # True匹配 # 找到有id的p標籤 # p = soup.find(name='p', attrs={"id": True}) # print(p) # 方法過濾器 # 匹配標籤名爲a、屬性有id沒有class的標籤 # def have_id_class(tag): # if tag.name == 'a' and tag.has_attr('id') and tag.has_attr('class'): # return tag # # tag = soup.find(name=have_id_class) # print(tag)
4、爬取豌豆莢app數據(提取遊戲主頁)mongodb
''' 主頁: 圖標地址、下載次數、大小、詳情頁地址 詳情頁: 遊戲名、圖標名、好評率、評論數、小編點評、簡介、網友評論、1-5張截圖連接地址、下載地址 https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=1&ctoken=FRsWKgWBqMBZLdxLaK4iem9B https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=2&ctoken=FRsWKgWBqMBZLdxLaK4iem9B https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=3&ctoken=FRsWKgWBqMBZLdxLaK4iem9B 32 ''' import requests from bs4 import BeautifulSoup # 一、發送請求 def get_page(url): response = requests.get(url) return response # 二、開始解析 # 解析主頁 def parse_index(data): soup = BeautifulSoup(data, 'lxml') # 獲取全部app的li標籤 app_list = soup.find_all(name='li', attrs={"class": "card"}) for app in app_list: # print('tank *' * 1000) # print(app) # 圖標地址 img = app.find(name='img').attrs['data-original'] print(img) # 下載次數 down_num = app.find(name='span', attrs={"class": "install-count"}).text print(down_num) import re # 大小 size = soup.find(name='span', text=re.compile("\d+MB")).text print(size) # 詳情頁地址 detail_url = soup.find(name='a', attrs={"class": "detail-check-btn"}).attrs['href'] print(detail_url) def main(): for line in range(1, 33): url = f"https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page={line}&ctoken=FRsWKgWBqMBZLdxLaK4iem9B" # 一、往app接口發送請求 response = get_page(url) # print(response.text) print('*' * 1000) # 反序列化爲字典 data = response.json() # 獲取接口中app標籤數據 app_li = data['data']['content'] # print(app_li) # 二、解析app標籤數據 parse_index(app_li) if __name__ == '__main__': main()
5、爬取豌豆莢app數據2數據庫
''' 主頁: 圖標地址、下載次數、大小、詳情頁地址 詳情頁: 遊戲名、好評率、評論數、小編點評、下載地址、簡介、網友評論、1-5張截圖連接地址、 https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=1&ctoken=FRsWKgWBqMBZLdxLaK4iem9B https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=2&ctoken=FRsWKgWBqMBZLdxLaK4iem9B https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=3&ctoken=FRsWKgWBqMBZLdxLaK4iem9B 32 ''' import requests from bs4 import BeautifulSoup # 一、發送請求 def get_page(url): response = requests.get(url) return response # 二、開始解析 # 解析詳情頁 def parse_detail(text): soup = BeautifulSoup(text, 'lxml') # print(soup) # app名稱 name = soup.find(name="span", attrs={"class": "title"}).text # print(name) # 好評率 love = soup.find(name='span', attrs={"class": "love"}).text # print(love) # 評論數 commit_num = soup.find(name='a', attrs={"class": "comment-open"}).text # print(commit_num) # 小編點評 commit_content = soup.find(name='div', attrs={"class": "con"}).text # print(commit_content) # app下載連接 download_url = soup.find(name='a', attrs={"class": "normal-dl-btn"}).attrs['href'] # print(download_url) print( f''' ============= tank ============== app名稱:{name} 好評率: {love} 評論數: {commit_num} 小編點評: {commit_content} app下載連接: {download_url} ============= end ============== ''' ) # 解析主頁 def parse_index(data): soup = BeautifulSoup(data, 'lxml') # 獲取全部app的li標籤 app_list = soup.find_all(name='li', attrs={"class": "card"}) for app in app_list: # print(app) # print('tank' * 1000) # print('tank *' * 1000) # print(app) # 圖標地址 # 獲取第一個img標籤中的data-original屬性 img = app.find(name='img').attrs['data-original'] print(img) # 下載次數 # 獲取class爲install-count的span標籤中的文本 down_num = app.find(name='span', attrs={"class": "install-count"}).text print(down_num) import re # 大小 # 根據文本正則獲取到文本中包含 數字 + MB(\d+表明數字)的span標籤中的文本 size = soup.find(name='span', text=re.compile("\d+MB")).text print(size) # 詳情頁地址 # 獲取class爲detail-check-btn的a標籤中的href屬性 # detail_url = soup.find(name='a', attrs={"class": "name"}).attrs['href'] # print(detail_url) # 詳情頁地址 detail_url = app.find(name='a').attrs['href'] print(detail_url) # 三、往app詳情頁發送請求 response = get_page(detail_url) # 四、解析app詳情頁 parse_detail(response.text) def main(): for line in range(1, 33): url = f"https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page={line}&ctoken=FRsWKgWBqMBZLdxLaK4iem9B" # 一、往app接口發送請求 response = get_page(url) # print(response.text) print('*' * 1000) # 反序列化爲字典 data = response.json() # 獲取接口中app標籤數據 app_li = data['data']['content'] # print(app_li) # 二、解析app標籤數據 parse_index(app_li) if __name__ == '__main__': main()
6、pymongo簡單使用json
from pymongo import MongoClient # 一、連接mongoDB客戶端 # 參數1: mongoDB的ip地址 # 參數2: mongoDB的端口號 默認:27017 client = MongoClient('localhost', 27017) # print(client) # 二、進入tank_db庫,沒有則建立 # print(client['tank_db']) # 三、建立集合 # print(client['tank_db']['people']) # 四、給tank_db庫插入數據 # 1.插入一條 # data1 = { # 'name': 'tank', # 'age': 18, # 'sex': 'male' # } # client['tank_db']['people'].insert(data1) # 2.插入多條 # data1 = { # 'name': 'tank', # 'age': 18, # 'sex': 'male' # } # data2 = { # 'name': '戚志雲', # 'age': 84, # 'sex': 'female' # } # data3 = { # 'name': '沈金金', # 'age': 73, # 'sex': 'male' # } # client['tank_db']['people'].insert([data1, data2, data3]) # # # 五、查數據 # # 查看全部數據 # data_s = client['tank_db']['people'].find() # print(data_s) # <pymongo.cursor.Cursor object at 0x000002EEA6720128> # # 須要循環打印全部數據 # for data in data_s: # print(data) # # # 查看一條數據 # data = client['tank_db']['people'].find_one() # print(data) # 官方推薦使用 # 插入一條insert_one # client['tank_db']['people'].insert_one() # 插入多條insert_many # client['tank_db']['people'].insert_many()
課堂筆記api
一、BeautifulSoup 解析庫 二、MongoDB 存儲庫 三、requests-html 請求庫 BeautifulSoup 一、什麼bs4,爲何要使用bs4? 是一個基於re開發的解析庫,能夠提供一些強大的解析功能。 提升提取數據的效率與爬蟲開發效率。 二、安裝與使用 pip3 install beautifulsoup4 # 安裝bs4 pip3 install lxml # 下載lxml解析器 MongoDB 非關係型數據庫 一 安裝與使用 一、下載安裝 https://www.mongodb.com/download-center/community 二、在C盤建立一個data/db文件夾 - 數據的存放路徑 三、mongod啓動服務 進入終端,輸入mongod啓動mongoDB服務。 四、mongo進入mongoDB客戶端 打開一個新的終端,輸入mongo進入客戶端 二 數據庫操做 數據庫操做: 切換庫: SQL: use admin; 有則切換,無則報錯。 MongoDB: use tank; 有則切換,無則建立,並切換tank庫中。 查數據庫: SQL: show databases; MongoDB: show dbs; 顯示的數據庫若無數據,則不顯示。 刪除庫: SQL: drop database MongoDB: db.dropDatabase() 集合操做: MySQL中叫作表。 建立集合: SQL: create table f1, f2... MongoDB: # 在當前庫中經過.來建立集合 db.student 插入數據: # 插入多條數據 db.student.insert([{"name1": "tank1"}, {"name2": "tank2"}]) # 插入一條 db.student.insert({"name": "tank"}) 查數據: # 查找student集合中全部數據 db.student.find({}) # 查一條 查找name爲tank的記錄 db.student.find({"name":"tank"}) 三 python連接MongoDB 一、下載第三方模塊pymongo pip3 install pymongo 二、連接mongoDB客戶端 client = MongoClient('localhost', 27017) 做業: 一、整理課堂內容,並寫博客 二、基於豌豆莢爬取剩下的簡介截圖圖片地址、網友評論 三、把豌豆莢爬取的數據插入mongoDB中 - 建立一個wandoujia庫 - 把主頁的數據存放一個名爲index集合中 - 把詳情頁的數據存放一個名爲detail集合中