線性迴歸代碼實現(matlab)

1 代價函數實現(cost function)

 

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0; 

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.

predictions = X * theta;
sqrErrors = (predictions-y) .^ 2;

J = 1/(2*m) * sum(sqrErrors);



% =========================================================================

end

  1.1 詳細解釋

轉化成了向量(矩陣)形式,若是用其餘的語言,用循環應該能夠實現函數

predictions = X * theta;        % 這裏的大X是矩陣

  

 

sqrErrors = (predictions-y) .^ 2;

  

2 梯度降低

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    %
    theta_temp = theta; for j = 1:size(X, 2) theta_temp(j) = theta(j)-alpha*(1/m)*(X*theta - y)' * X(:, j); end theta = theta_temp;





    % ============================================================

    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);

end

end

  2.1 解釋

J_history = zeros(num_iters, 1);

 

theta_temp = theta;

  把theta存起來。保證同時更新spa

for j = 1:size(X, 2)
        theta_temp(j) = theta(j)-alpha*(1/m)*(X*theta - y)' * X(:, j);
    end

  更新theta    debug

(X*theta - y)' 是轉置

(X*theta - y)' * X(:, j);

  這步是求和,至關於sum3d

 

  J_history(iter) = computeCost(X, y, theta);code

記錄代價函數orm

由於隨着迭代次數的增長,代價函數收斂。theta也就肯定了。blog

代價函數的是下降,同時theta也在變化it

到後面代價函數的值已經不變化了。到收斂了io

相關文章
相關標籤/搜索