[leetcode] Longest Palindromic Substring

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. html

https://oj.leetcode.com/problems/longest-palindromic-substring/ java

思路1(naive approach):依次檢查全部的子串(n^2),判斷是不是palindrome(n),複雜度 O(n^3)。 數組

思路2(dp):dp[i][j] 表明從i到j的子串是不是palindrome。自下而上自左而右計算dp數組。時空複雜度都是 O(n^2)。 app

    dp[i][j]=1  if: spa

  1.     i=j;
  2.     s.charAt(i)==s.charAt(j)    &&    j-i<2
  3.     s.charAt(i)==s.charAt(j)    &&    dp[i+1][j-1]==1


思路3:遍歷字符串的每一個字符,從這個字符出發(或者這個字符和下一個字符出發)向兩側輻射找出最長的子串。時間複雜度 O(n^2),空間複雜度O(1)。 .net

思路4:Manacher's algorithm。時空複雜度O(n)。有待研究。 code


DP代碼: htm

public class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.length() == 0)
            return null;
        int start = 0;
        int end = 0;
        int len = 0;
        boolean[][] dp = new boolean[s.length()][s.length()];
        for (int i = s.length() - 1; i >= 0; i--) {
            for (int j = i; j < s.length(); j++) {
                if (i == j || (s.charAt(i) == s.charAt(j) && j - i < 2)
                        || (s.charAt(i) == s.charAt(j) && dp[i + 1][j - 1])) {
                    dp[i][j] = true;
                    if (j - i + 1 > len) {
                        len = j - i;
                        start = i;
                        end = j + 1;
                    }
                }

            }
        }

        return s.substring(start, end);
    }

    public static void main(String[] args) {
        System.out.println(new Solution().longestPalindrome("ababadccd"));
        System.out.println(new Solution().longestPalindrome("a"));
        System.out.println(new Solution().longestPalindrome(""));

    }

}


參考: blog

http://www.programcreek.com/2013/12/leetcode-solution-of-longest-palindromic-substring-java/ leetcode

http://www.cnblogs.com/TenosDoIt/p/3675788.html

http://blog.csdn.net/worldwindjp/article/details/22066307

相關文章
相關標籤/搜索