歐拉函數簡要推導

\[\texttt{Proposition} \]

定義歐拉函數 \(\varphi(n)\) 爲 " 在 \(1 \sim n\) 中與 \(n\) 互質的數的個數 "。函數

\(n\)\(m\) 個質因子 \(p_1, ...,p_m\),則有 \(\varphi(n) = n \prod\limits_{i=1}^m (1-\frac{1}{p_i})\)spa

\[\texttt{Proof} \]

考慮構造 \(m\) 個集合 \(A_1,...,A_m\),其中 \(A_i = \{x \in \mathbb{Z} \ | \ 1 \leq x \leq n, x \bmod p_i = 0 \}\)ip

顯然,在 \(1 \sim n\)\(n\) 不互質的數的集合爲:it

\[\bigcup\limits_{i=1}^m A_i \]

\(\varphi(n)\) 爲:io

\[n - \left| \bigcup\limits_{i=1}^m A_i \right| \]

由容斥原理,得:class

\[n - \sum\limits_{1 \leq i \leq m}\left| A_i \right| + \sum\limits_{1 \leq i < j \leq m} \left| A_i \bigcap A_j \right| - \sum\limits_{1 \leq i < j < k \leq m} \left| A_i \bigcap A_j \bigcap A_k \right| + \ ... \ + (-1)^m \left| A_1 \bigcap \ ... \ \bigcap A_m \right| \]

即:原理

\[n - \sum\limits_{1 \leq i \leq m} \frac{n}{p_i} + \sum\limits_{1 \leq i < j \leq m} \frac{n}{p_ip_j}- \sum\limits_{1 \leq i < j < k \leq m} \frac{n}{p_ip_jp_k} + \ ... \ + (-1)^m \frac{n}{p_1p_2 \ ... \ p_m} \]

提取公因式 \(n\) 得:gc

\[n \times(1 - \sum\limits_{1 \leq i \leq m} \frac{1}{p_i} + \sum\limits_{1 \leq i < j \leq m} \frac{1}{p_ip_j}- \sum\limits_{1 \leq i < j < k \leq m} \frac{1}{p_ip_jp_k} + \ ... \ + (-1)^m \frac{1}{p_1p_2 \ ... \ p_m}) \]

通分,得:im

\[n \times (\frac{p_1p_2 \ ... \ p_m}{p_1p_2 \ ... \ p_m} - \ ... \ + (-1)^{m - 1}\sum\limits_{1 \leq i \leq m} \frac{p_i}{p_1p_2 \ ... \ p_m} + (-1)^m \frac{1}{p_1p_2 \ ... \ p_m} ) \]

\[n \times \frac{\left( p_1p_2 \ ... \ p_m \right) - \ ... \ + (-1)^{m - 1}\left( \sum\limits_{1 \leq i \leq m} p_i \right) + (-1)^m}{p_1p_2 \ ... \ p_m} \]

在分子中提取公因式 \(p_1\),與未包含 \(p_1\) 的項結合,得:集合

\[n \times \frac{\left( p_1 - 1 \right)\left(- \left(p_2 \ ... \ p_m \right) + \ ... \ + (-1)^{m - 2}\left( \sum\limits_{2 \leq i \leq m} p_i \right) + \left( -1 \right)^{m - 1}\right)}{p_1p_2 \ ... \ p_m} \]

在分子中依次提取 \(p2, ...,p_m\),得:

\[n \times \frac{(p_1 - 1)(p_2 - 1) \ ... \ (p_m - 1)}{p_1p_2 \ ... \ p_m} \]

即:

\[n \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2} \times \ ... \ \times \frac{p_m - 1}{p_m} \]

\[n \prod\limits_{i=1}^m (1-\frac{1}{p_i}) \]

證畢。

相關文章
相關標籤/搜索