\[\texttt{Proposition} \]
定義歐拉函數 \(\varphi(n)\) 爲 " 在 \(1 \sim n\) 中與 \(n\) 互質的數的個數 "。函數
設 \(n\) 有 \(m\) 個質因子 \(p_1, ...,p_m\),則有 \(\varphi(n) = n \prod\limits_{i=1}^m (1-\frac{1}{p_i})\)。spa
\[\texttt{Proof} \]
考慮構造 \(m\) 個集合 \(A_1,...,A_m\),其中 \(A_i = \{x \in \mathbb{Z} \ | \ 1 \leq x \leq n, x \bmod p_i = 0 \}\)。ip
顯然,在 \(1 \sim n\) 與 \(n\) 不互質的數的集合爲:it
\[\bigcup\limits_{i=1}^m A_i \]
故 \(\varphi(n)\) 爲:io
\[n - \left| \bigcup\limits_{i=1}^m A_i \right| \]
由容斥原理,得:class
\[n - \sum\limits_{1 \leq i \leq m}\left| A_i \right| + \sum\limits_{1 \leq i < j \leq m} \left| A_i \bigcap A_j \right| - \sum\limits_{1 \leq i < j < k \leq m} \left| A_i \bigcap A_j \bigcap A_k \right| + \ ... \ + (-1)^m \left| A_1 \bigcap \ ... \ \bigcap A_m \right| \]
即:原理
\[n - \sum\limits_{1 \leq i \leq m} \frac{n}{p_i} + \sum\limits_{1 \leq i < j \leq m} \frac{n}{p_ip_j}- \sum\limits_{1 \leq i < j < k \leq m} \frac{n}{p_ip_jp_k} + \ ... \ + (-1)^m \frac{n}{p_1p_2 \ ... \ p_m} \]
提取公因式 \(n\) 得:gc
\[n \times(1 - \sum\limits_{1 \leq i \leq m} \frac{1}{p_i} + \sum\limits_{1 \leq i < j \leq m} \frac{1}{p_ip_j}- \sum\limits_{1 \leq i < j < k \leq m} \frac{1}{p_ip_jp_k} + \ ... \ + (-1)^m \frac{1}{p_1p_2 \ ... \ p_m}) \]
通分,得:im
\[n \times (\frac{p_1p_2 \ ... \ p_m}{p_1p_2 \ ... \ p_m} - \ ... \ + (-1)^{m - 1}\sum\limits_{1 \leq i \leq m} \frac{p_i}{p_1p_2 \ ... \ p_m} + (-1)^m \frac{1}{p_1p_2 \ ... \ p_m} ) \]
\[n \times \frac{\left( p_1p_2 \ ... \ p_m \right) - \ ... \ + (-1)^{m - 1}\left( \sum\limits_{1 \leq i \leq m} p_i \right) + (-1)^m}{p_1p_2 \ ... \ p_m} \]
在分子中提取公因式 \(p_1\),與未包含 \(p_1\) 的項結合,得:集合
\[n \times \frac{\left( p_1 - 1 \right)\left(- \left(p_2 \ ... \ p_m \right) + \ ... \ + (-1)^{m - 2}\left( \sum\limits_{2 \leq i \leq m} p_i \right) + \left( -1 \right)^{m - 1}\right)}{p_1p_2 \ ... \ p_m} \]
在分子中依次提取 \(p2, ...,p_m\),得:
\[n \times \frac{(p_1 - 1)(p_2 - 1) \ ... \ (p_m - 1)}{p_1p_2 \ ... \ p_m} \]
即:
\[n \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2} \times \ ... \ \times \frac{p_m - 1}{p_m} \]
\[n \prod\limits_{i=1}^m (1-\frac{1}{p_i}) \]
證畢。