【BZOJ5104】Fib數列(BSGS,二次剩餘)

【BZOJ5104】Fib數列(BSGS,二次剩餘)

題面

BZOJphp

題解

首先求出斐波那契數列的通項:
\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\),那麼\(f[n]=\frac{1}{\sqrt 5}(A^n-B^n)\)
而後有\(A=-\frac{1}{B}\),因此有:\(f[n]=\frac{1}{\sqrt 5}((-\frac{1}{B})^n-B^n)\)
\(x=B^n\),這裏須要考慮一下\(n\)的奇偶性:
若是\(n\)是偶數,有:\(\sqrt 5 f[n]=\frac{1}{x}-x\),轉成一元二次方程能夠直接求解\(x\),而後再\(BSGS\)還原。
\(n\)是奇數相似。ios

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
using namespace std;
#define MOD 1000000009
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
namespace SQRT
{
    bool check(int n){return fpow(n,(MOD-1)>>1)==1;}
    int w;struct Num{int a,b;};
    Num operator*(Num a,Num b){return (Num){(1ll*a.a*b.a+1ll*a.b*b.b%MOD*w)%MOD,(1ll*a.a*b.b+1ll*a.b*b.a)%MOD};}
    Num fpow(Num a,int b){Num s=(Num){1,0};while(b){if(b&1)s=s*a;a=a*a;b>>=1;}return s;}
    int Sqrt(int n)
    {
        if(!check(n))return -1;
        int a;do a=rand()%MOD;while(check((1ll*a*a+MOD-n)%MOD));
        w=(1ll*a*a-n+MOD)%MOD;
        return fpow((Num){a,1},(MOD+1)>>1).a;
    }
}
namespace BSGS
{
    map<int,int> M;
    const int m=sqrt(MOD);
    int BSGS(int x,int y)
    {
        M.clear();
        for(int i=0,t=1;i<m;++i,t=1ll*t*x%MOD)M[1ll*y*t%MOD]=i;
        for(int i=1,p=fpow(x,m),t=p;i<=m;++i,t=1ll*t*p%MOD)
            if(M.find(t)!=M.end())
                return i*m-M[t];
        return 2e9;
    }
}
int n,ans=2e9;
int main()
{
    int sqrt5=SQRT::Sqrt(5);
    scanf("%d",&n);
    int A=MOD-1,B=(MOD-1ll*sqrt5*n%MOD)%MOD;
    int d1=(1ll*B*B%MOD+MOD-4ll*A%MOD)%MOD;
    int d2=(1ll*B*B%MOD+4ll*A%MOD)%MOD;
    if(SQRT::check(d1))
    {
        int vd=SQRT::Sqrt(d1);
        int x1=1ll*(0ll+MOD-B+vd)%MOD*fpow(A+A,MOD-2)%MOD;
        int x2=1ll*(0ll+MOD-B+MOD-vd)%MOD*fpow(A+A,MOD-2)%MOD;
        int beta=1ll*(1+MOD-sqrt5)*fpow(2,MOD-2)%MOD;
        int n1=BSGS::BSGS(beta,x1);
        int n2=BSGS::BSGS(beta,x2);
        if(!(n1&1))ans=min(ans,n1);
        if(!(n2&1))ans=min(ans,n2);
    }
    if(SQRT::check(d2))
    {
        int vd=SQRT::Sqrt(d2);
        int x1=1ll*(0ll+MOD-B+vd)%MOD*fpow(A+A,MOD-2)%MOD;
        int x2=1ll*(0ll+MOD-B+MOD-vd)%MOD*fpow(A+A,MOD-2)%MOD;
        int beta=1ll*(1+MOD-sqrt5)*fpow(2,MOD-2)%MOD;
        int n1=BSGS::BSGS(beta,x1);
        int n2=BSGS::BSGS(beta,x2);
        if(n1&1)ans=min(ans,n1);
        if(n2&1)ans=min(ans,n2);
    }
    printf("%d\n",ans<MOD?ans:-1);
    return 0;
}
相關文章
相關標籤/搜索