1.8的源碼分析在這裏:jdk1.8hashMap源碼分析java
jdk1.7的map接口結構:算法
jdk1.8的map接口結構:數組
hashMap繼承關係:dom
hashTable繼承結構:源碼分析
concurrentHashMap繼承關係:this
哈哈,我比較懶,不想畫圖,自行腦補三者關係。spa
幾個關鍵字說明:.net
//map 初始化容量,即數組大小 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 //最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; //默認加載因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; //承載量=容量*加載因子 int threshold; //加載因子 final float loadFactor; //map結構變動過的次數 transient int modCount; //聲明的表,初始化爲空 transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE; // key-map鍵值對的個數,不能大於承載量 transient int size;
Map<String,Object> param = new HashMap<>();
new一個對象,咱們看看hashmap作了什麼:code
public HashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); }
public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor;//初始化加載因子 threshold = initialCapacity;//初始化承載量,16 init();//供子類擴展的方法 }
能夠看出,只初始化了加載因子和承載量。對象
下面分析,put() 和 remove方法。
put():
public V put(K key, V value) { if (table == EMPTY_TABLE) {//初始化數組,容量爲16 inflateTable(threshold);//初始化table數組,源碼在下面 } if (key == null) return putForNullKey(value);//若是key爲空,則 int hash = hash(key);//根據key求出hash值 int i = indexFor(hash, table.length);//求出在數組中的位置 for (HashMap.Entry<K,V> e = table[i]; e != null; e = e.next) {//遍歷鏈表找出對應的key,覆蓋原有的value Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } //若是沒找到,則新增一個Entry,結構改變,modCount加一 modCount++; addEntry(hash, key, value, i);//源碼解釋在下面 return null; }
//取hash值得算法 final int hash(Object k) { int h = hashSeed; if (0 != h && k instanceof String) { return sun.misc.Hashing.stringHash32((String) k); } h ^= k.hashCode(); h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); }
private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) {//遍歷鏈表,若是找到key值爲null,將value賦值給對應的key if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } //若是沒找到,鏈表會增長一個節點,結構變化了,modCount加一 modCount++; addEntry(0, null, value, 0);//添加一個key爲null,值爲value的Entry,源碼向下看 return null; }
void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) {//判斷是否是須要擴容,擴容之後須要從新算hash值和數組下標位置 resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length);//源碼向下看 } createEntry(hash, key, value, bucketIndex);//源碼向下看 }
static int indexFor(int h, int length) { // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2"; return h & (length-1);//查找entry在數組中存放的位置 }
void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex];//bucketIndex位置值賦值給e table[bucketIndex] = new Entry<>(hash, key, value, e);//new 一個Entry放在bucketIndex size++; }
remove():
public V remove(Object key) { Entry<K,V> e = removeEntryForKey(key); return (e == null ? null : e.value); }
final HashMap.Entry<K,V> removeEntryForKey(Object key) { if (size == 0) {//size表示hashmap中 HashMap.Entry對象的個數,若是爲零,表示空map return null; } int hash = (key == null) ? 0 : hash(key);//根據key求出hash值 int i = indexFor(hash, table.length);//求出元素在哪一個數組位置 HashMap.Entry<K,V> prev = table[i];//取出對應的鏈表 HashMap.Entry<K,V> e = prev;//遍歷用,存儲遍歷元素的前一個元素或者當前entry while (e != null) { HashMap.Entry<K,V> next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {//遍歷鏈表,找到對應的key modCount++;//找到對應的元素,map結構改變一次,modCount加一 size--;//HashMap.Entry對象的個數減一 if (prev == e)//若是當前entry就是要找的,直接將下一個entry放在數組對應位置,(要刪除元素在鏈表頭部) table[i] = next; else prev.next = next;//從中間刪除節點,直接讓被刪元素上一個entry指向它的下一個entry e.recordRemoval(this);//這個不知道幹嗎的 return e; } //若是當前節點不是要找的元素,繼續遍歷鏈表 prev = e; e = next; } return e; }
private void inflateTable(int toSize) { // Find a power of 2 >= toSize int capacity = roundUpToPowerOf2(toSize);//初始化容量,默認爲16 threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);//初始化承載量 table = new Entry[capacity];//初始化table數組 initHashSeedAsNeeded(capacity);//這個暫時不作解釋 }
private static int roundUpToPowerOf2(int number) { // assert number >= 0 : "number must be non-negative"; return number >= MAXIMUM_CAPACITY ? MAXIMUM_CAPACITY : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;//初始化table容量,保證容量是2的冪次 }
//擴容 當元素數量>=承載量時,進行擴容 void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) {//容量爲2的冪次,最大爲2的30次方,因此一直擴容確定有等於最大冪次的時候 threshold = Integer.MAX_VALUE;//這時就把Integer的最大值給承載量 return; } Entry[] newTable = new Entry[newCapacity];//建立新的table transfer(newTable, initHashSeedAsNeeded(newCapacity));//判斷新的table中的元素是否須要從新求hash值,源碼在下面 table = newTable;//數組擴容賦值給table threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);//算出新的承載量 }
void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entry<K,V> e : table) {// 遍歷舊錶,若是須要從新求hash值就進行rehash操做 while(null != e) { Entry<K,V> next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } } }
//這段沒看懂,大致意思是初始化好數據,若是須要則做爲是否進行rehash的條件 final boolean initHashSeedAsNeeded(int capacity) { boolean currentAltHashing = hashSeed != 0; boolean useAltHashing = sun.misc.VM.isBooted() && (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD); boolean switching = currentAltHashing ^ useAltHashing; if (switching) { hashSeed = useAltHashing ? sun.misc.Hashing.randomHashSeed(this) : 0; } return switching; }
因此,1.7和1.8的hashmap到底有哪些不一樣呢: 1.hash的取值算法不一樣 2.求數組下標的算法不一樣 3.1.8的實體是Node繼承了entry,鏈表長度大於8的時候轉換爲紅黑樹。