雙邊濾波是一種非線性濾波器,它能夠達到保持邊緣、降噪平滑的效果。和其餘濾波原理同樣,雙邊濾波也是採用加權平均的方法,用周邊像素亮度值的加權平均表明某個像素的強度,所用的加權平均基於高斯分佈[1]。最重要的是,雙邊濾波的權重不只考慮了像素的歐氏距離(如普通的高斯低通濾波,只考慮了位置對中心像素的影響),還考慮了像素範圍域中的輻射差別(例如卷積核中像素與中心像素之間類似程度、顏色強度,深度距離等),在計算中心像素的時候同時考慮這兩個權重。算法
雙邊濾波的核函數是空間域核與像素範圍域核的綜合結果:在圖像的平坦區域,像素值變化很小,對應的像素範圍域權重接近於1,此時空間域權重起主要做用,至關於進行高斯模糊;在圖像的邊緣區域,像素值變化很大,像素範圍域權重變大,從而保持了邊緣的信息。函數
void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d, double sigmaColor, double sigmaSpace, int borderType ) { Mat src = _src.getMat(); _dst.create( src.size(), src.type() ); Mat dst = _dst.getMat(); if( src.depth() == CV_8U ) bilateralFilter_8u( src, dst, d, sigmaColor, sigmaSpace, borderType ); else if( src.depth() == CV_32F ) bilateralFilter_32f( src, dst, d, sigmaColor, sigmaSpace, borderType ); else CV_Error( CV_StsUnsupportedFormat, "Bilateral filtering is only implemented for 8u and 32f images" ); } static void bilateralFilter_8u( const Mat& src, Mat& dst, int d, double sigma_color, double sigma_space, int borderType ) { int cn = src.channels(); int i, j, k, maxk, radius; Size size = src.size(); CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) && src.type() == dst.type() && src.size() == dst.size() && src.data != dst.data ); if( sigma_color <= 0 ) sigma_color = 1; if( sigma_space <= 0 ) sigma_space = 1; // 計算顏色域和空間域的權重的高斯核係數, 均值 μ = 0; exp(-1/(2*sigma^2)) double gauss_color_coeff = -0.5/(sigma_color*sigma_color); double gauss_space_coeff = -0.5/(sigma_space*sigma_space); // radius 爲空間域的大小: 其值是 windosw_size 的一半 if( d <= 0 ) radius = cvRound(sigma_space*1.5); else radius = d/2; radius = MAX(radius, 1); d = radius*2 + 1; Mat temp; copyMakeBorder( src, temp, radius, radius, radius, radius, borderType ); vector<float> _color_weight(cn*256); vector<float> _space_weight(d*d); vector<int> _space_ofs(d*d); float* color_weight = &_color_weight[0]; float* space_weight = &_space_weight[0]; int* space_ofs = &_space_ofs[0]; // 初始化顏色相關的濾波器係數: exp(-1*x^2/(2*sigma^2)) for( i = 0; i < 256*cn; i++ ) color_weight[i] = (float)std::exp(i*i*gauss_color_coeff); // 初始化空間相關的濾波器係數和 offset: for( i = -radius, maxk = 0; i <= radius; i++ ) { j = -radius; for( ;j <= radius; j++ ) { double r = std::sqrt((double)i*i + (double)j*j); if( r > radius ) continue; space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff); space_ofs[maxk++] = (int)(i*temp.step + j*cn); } } // 開始計算濾波後的像素值 for( i = 0; i < 0, size.height; i++ ) { const uchar* sptr = temp->ptr(i+radius) + radius*cn; // 目標像素點 uchar* dptr = dest->ptr(i); if( cn == 1 ) { // 按行開始遍歷 for( j = 0; j < size.width; j++ ) { float sum = 0, wsum = 0; int val0 = sptr[j]; // 遍歷當前中心點所在的空間鄰域 for( k = 0; k < maxk; k++ ) { int val = sptr[j + space_ofs[k]]; float w = space_weight[k]*color_weight[std::abs(val - val0)]; sum += val*w; wsum += w; } // 這裏不可能溢出, 所以沒必要使用 CV_CAST_8U. dptr[j] = (uchar)cvRound(sum/wsum); } } else { assert( cn == 3 ); for( j = 0; j < size.width*3; j += 3 ) { float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0; int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2]; k = 0; for( ; k < maxk; k++ ) { const uchar* sptr_k = sptr + j + space_ofs[k]; int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2]; float w = space_weight[k]*color_weight[std::abs(b - b0) + std::abs(g - g0) + std::abs(r - r0)]; sum_b += b*w; sum_g += g*w; sum_r += r*w; wsum += w; } wsum = 1.f/wsum; b0 = cvRound(sum_b*wsum); g0 = cvRound(sum_g*wsum); r0 = cvRound(sum_r*wsum); dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0; } } } }
[1]: Bilateral Filters(雙邊濾波算法)原理及實現
[2]: 雙邊濾波算法介紹與實現spa