寫在前面的廢話:python
出了託福成績啦,本人戰戰兢兢考了個97!成績好的出乎意料!喜大普奔!撒花慶祝!git
傻…………寒假還要怒學一個月刷100慶祝個毛線…………網絡
正題:app
題目是CNN,可是CNN的具體原理和以後會寫一篇博客在deeplearning目錄下詳細說明。less
簡單地說,CNN與NN相比獨特之處在於用部分鏈接代替全連接,並用pooling來對數據進行降維,這樣作有幾個好處:dom
這裏主要說代碼。編輯器
一、類:LeNetConvPoolLayeride
二、類:evaluate_lenet5函數
用到的兩個類大概就是這個樣子。oop
訓練過程當中的要點:
訓練過程大概就是這個樣子。
一點感想:
validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] 用法很高級
下面是本身本身一行一行讀代碼寫並寫上的中文註釋。(cnblog太窄複製到文本編輯器看吧,推薦sublime)
This implementation simplifies the model in the following ways: - LeNetConvPool doesn't implement location-specific gain and bias parameters - LeNetConvPool doesn't implement pooling by average, it implements pooling by max. - Digit classification is implemented with a logistic regression rather than an RBF network - LeNet5 was not fully-connected convolutions at second layer """ import cPickle import gzip import os import sys import time import numpy import theano import theano.tensor as T from theano.tensor.signal import downsample from theano.tensor.nnet import conv from logistic_sgd import LogisticRegression, load_data from mlp import HiddenLayer class LeNetConvPoolLayer(object): """Pool Layer of a convolutional network """ def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height,filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows,#cols) """ assert image_shape[1] == filter_shape[1] self.input = input # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = numpy.prod(filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)) # initialize weights with random weights W_bound = numpy.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared(numpy.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX), borrow=True) # the bias is a 1D tensor -- one bias per output feature map b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) # convolve input feature maps with filters conv_out = conv.conv2d(input=input, filters=self.W, #卷積函數,用W卷積不加偏置 filter_shape=filter_shape, image_shape=image_shape) # downsample each feature map individually, using maxpooling pooled_out = downsample.max_pool_2d(input=conv_out, #pooling,用max不用mean,不重疊 ds=poolsize, ignore_border=True) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will # thus be broadcasted across mini-batches and feature map # width & height self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) #卷積層池化後加上偏置用tanh輸出,dimshuffle()將向量整形爲矩陣,具體不懂 # store parameters of this layer self.params = [self.W, self.b] #卷積核+偏置併爲參數 #學習率=0.1, 學習次數=200, nkerns=[20,50]表示第一層20個核,第二層50個核; 補丁大小:500???? def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='../data/mnist.pkl.gz', nkerns=[20, 50], batch_size=500): """ Demonstrates lenet on MNIST datasets :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints :param nkerns: number of kernels on each layer """ rng = numpy.random.RandomState(23455) #隨機數作種 datasets = load_data(dataset) #讀入數據 train_set_x, train_set_y = datasets[0] #傳遞三部分數據(解包) valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing #表示數據能夠借用提升GPU運算速率,shape[0],做用爲止 n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size #樣本總數量 n_valid_batches /= batch_size n_test_batches /= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch #當前batch的下標 x = T.matrix('x') # the data is presented as rasterized images #當前batch y = T.ivector('y') # the labels are presented as 1D vector of #當前batch的標籤 # [int] labels ishape = (28, 28) # this is the size of MNIST images ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size,28*28) # to a 4D tensor, compatible with our LeNetConvPoolLayer layer0_input = x.reshape((batch_size, 1, 28, 28)) #input是reshape的x # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1,28-5+1)=(24,24) # maxpooling reduces this further to (24/2,24/2) = (12,12) # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12) #初始化第一個卷積池化layer,input = layer0_input layer0 = LeNetConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2)) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1,12-5+1)=(8,8) # maxpooling reduces this further to (8/2,8/2) = (4,4) # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4) #初始化第二個卷積池化layer , input = layer0_output layer1 = LeNetConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2)) # the TanhLayer being fully-connected, it operates on 2D matrices of # shape (batch_size,num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (20,32*4*4) = (20,512) #layer2是第一層全鏈接層,拉平後的池化層做爲輸入 layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer # 用隱藏層的類表示 layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh) # classify the values of the fully-connected sigmoidal layer # 輸出是邏輯迴歸層 layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model # 代價函數值用negative_log_likelihood來算,(自帶的?) cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model # 定義一個函數,計算輸出層的偏差,用givens來覆蓋全局變量 test_model = theano.function([index], layer3.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size]}) ## 同上定義一個函數,計算輸出層的偏差,用givens來覆蓋全局變量 validate_model = theano.function([index], layer3.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size]}) # create a list of all model parameters to be fit by gradient descent # 各層參數合併 params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters # 利用自帶的函數計算各參數的偏導 grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i],grads[i]) pairs. # 更新參數十分麻煩, 建立一個叫作updates的list來自動更新(?爲何要用for,這樣不會很慢嗎?——墳蛋這不是matlab!) updates = [] for param_i, grad_i in zip(params, grads): updates.append((param_i, param_i - learning_rate * grad_i)) # 定義訓練函數,輸出cost並用update 的方法更新參數 train_model = theano.function([index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size]}) ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is 若是訓練偏差良好的話訓練的次數變爲兩倍 # found improvement_threshold = 0.995 # a relative improvement of this much is 若是偏差小於上一次偏差的0.995,patience increase # considered significant validation_frequency = min(n_train_batches, patience / 2) #評價訓練效果的頻率,這個數值爲何這麼取我不清楚 # go through this manually # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): #整體樣本訓練次數 epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): #逐個樣本訓練 iter = (epoch - 1) * n_train_batches + minibatch_index #到目前爲止總的訓練次數 if iter % 100 == 0: #每訓練100次輸出一個提示,提示訓練次數 print 'training @ iter = ', iter cost_ij = train_model(minibatch_index) #訓練一次 if (iter + 1) % validation_frequency == 0: #到達須要進行一次評價的次數,對學習結果進行評價 # compute zero-one loss on validation set #利用for循環和validation_modle(index)返回全部評價樣本的偏差值並構造一個表 validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) #當前偏差值=當前平均 print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index + 1, n_train_batches, \ this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #若是當 前平均偏差<(最好偏差*閥值),證實參數還有很大的優化空間,加倍訓練次數 #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] #用測試樣本對模型參數進行評價 test_score = numpy.mean(test_losses) #這裏有個tip:應爲參數使用train集合訓練使用validation集合進行評價; print((' epoch %i, minibatch %i/%i, test error of best ' #因此參數的擬合是會偏向那兩個集合的特徵的,因此要是用全新的集合來獲得參數的客觀表現 'model %f %%') % #在各類訓練中,樣本都要分爲訓練樣本、評價(擬合)樣本和測試樣本進行使用,比例大概是6:2:2,這裏是 5:1:1 (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: #若是沒耐性了(到達最大訓練次數),就中止訓練 done_looping = True break #下面就是計時啊評價啊什麼什麼的 end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i,'\ 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) if __name__ == '__main__': evaluate_lenet5() def experiment(state, channel): evaluate_lenet5(state.learning_rate, dataset=state.dataset)