【Python】SQL to Pandas 系列(二)

原文地址python

介紹

此文爲 SQL to Pandas 系列第二篇sql

可先閱讀post

【Python】當數據離開了 SQL 該怎麼活下去(一)測試

補充上篇 JOIN 內容

本篇將解構下面的 SQL 查詢句式, 使用 Pandas 進行實現ui

SQL 查詢句式spa

SELECT DISTINCT [字段] 
FROM [表] JOIN [bin] ON [鏈接條件] 
WHERE [過濾條件] 
GROUP BY [字段] 
HAVING [條件] 
ORDER BY [字段] DESC 
LIMIT [個數] OFFSET [個數]
複製代碼

讀取評論數據

df_comments = pd.read_sql(sql="select * from comments", con=conn)
複製代碼

數據預覽code

df_comments
複製代碼
id student_id content
0 1 1 測試評論1
1 2 5 測試評論5
2 3 2 測試評論2
3 4 3 測試評論3
4 5 1 測試評論11
5 6 9 測試評論9

JOIN

(INNER) JOINcdn

SQLci

SELECT
	* 
FROM
	student
	INNER JOIN comments ON student.id = comments.student_id;
複製代碼

Pandasget

pd.merge(df, df_comments, left_on='id', right_on='student_id')
複製代碼

LEFT (OUTER) JOIN

SQL

SELECT
	* 
FROM
	student
	LEFT JOIN comments ON student.id = comments.student_id;
複製代碼

Pandas

pd.merge(df, df_comments, left_on='id', right_on='student_id', how='left')
複製代碼

RIGHT (OUTER) JOIN

SQL

SELECT
	* 
FROM
	student
	RIGHT JOIN comments ON student.id = comments.student_id;
複製代碼

Pandas

pd.merge(df, df_comments, left_on='id', right_on='student_id', how='right')
複製代碼

UNION

SQL

SELECT * FROM student where city ='北京' 
UNION 
SELECT * FROM student where sex ='男';
複製代碼

Pandas

pd.concat([df[df.city == '北京'], df[df.sex == '男']]).drop_duplicates().reset_index()
複製代碼

UNION ALL

SQL

SELECT * FROM student where city ='北京' 
UNION ALL 
SELECT * FROM student where sex ='男';
複製代碼

Pandas

pd.concat([df[df.city == '北京'], df[df.sex == '男']]).reset_index()
複製代碼

本篇內容

本篇將解構下面的 SQL 查詢句式, 使用 Pandas 進行實現

SQL 建立句式

CREATE TABLE [表名] (
    [列名] [類型],
    [列名] [類型],
   ....
);
複製代碼

SQL 插入句式

INSERT INTO [表名] VALUES ([值], [值], ...);
INSERT INTO [表名] ([列名],[列名] ...) VALUES ([值], [值], ...);
複製代碼

SQL 更新句式

UPDATE [表名]
SET [列名] = [值], [列名] = [值]
WHERE [過濾條件];
複製代碼

SQL 刪除句式

DELETE FROM [表名] WHERE [過濾條件];
複製代碼

CREATE

SQL

CREATE TABLE student (
	id INT ( 11 ) NOT NULL AUTO_INCREMENT,
	name VARCHAR ( 10 ) COLLATE utf8mb4_general_ci DEFAULT NULL,
	age date DEFAULT NULL,
	sex VARCHAR ( 10 ) COLLATE utf8mb4_general_ci DEFAULT NULL,
	city VARCHAR ( 255 ) CHARACTER 
    SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL,
	money DOUBLE ( 255, 2 ) DEFAULT NULL,

);
複製代碼

Pandas

pd.DataFrame(columns=['id', 'name', 'sex', 'city', 'money'])
複製代碼

INSERT

SQL

INSERT INTO student (id, name, age, sex, city, money )
VALUES
	(1, '張三', '2017-12-20', '女', '天津', 20.00 );
複製代碼

Pandas

# 第一種
df.loc[-1] = [1, '張三', '女', '天津', 20.00]
df.index = df.index + 1
df = df.sort_index()

# 第二種
temp_pd = pd.DataFrame({'id': [1], 'name': ['張三'], 'sex': ['女'], 'city': ['天津'], 'money': [20.00]})
df = pd.concat([df,temp_pd], ignore_index=True)
df.reset_index()

# 第三種
temp_pd = pd.DataFrame([[1,'張三1', '女', '天津', 20.00]], columns=df.columns)
df = pd.concat([df, temp_pd])
df.reset_index()
複製代碼

UPDATE

SQL

UPDATE student SET money = 300 WHERE id = 1;
複製代碼

Pandas

df.loc[df.id == 1, 'money'] = 300
複製代碼

DELETE

SQL

-- 測試時會因外鍵報錯,此處忽略,僅討論句法
DELETE FROM student WHERE id = 1;
複製代碼

Pandas

df = df.loc[df.id != 1]
複製代碼

系列文章

【Python】當數據離開了 SQL 該怎麼活下去(一)

【Python】當數據離開了 SQL 該怎麼活下去(二)

相關文章
相關標籤/搜索