CF1355C Count Triangles

傳送門ios

 

 

 

思路:咱們須要知足 x + y > z  ,  x + z > y ,  y + z > x .由於 A <= X <=B <= Y <= C <= Z <= D,因此 X + Z > Y和 Y + Z > X明顯必定知足,因此咱們只須要肯定X + Y > Z的個數了.X∈[A,B],Y∈[B,C],則咱們發現若X = A,則 X + Y = [A + B, A + C], X = A + 1, X + Y = [A + B + 1, A + C + 1].能夠看出這就是區間+1操做,這樣咱們只須要枚舉X的取值範圍獲得一個[L,R],讓該區間值+1,最後咱們就能夠獲得X+Y=[A+B,B+C]中任意一個數值的方案數,而後獲得一個前綴和數組P[i],表示X+Y=[1,i]的總方案數.這樣咱們只須要枚舉Z∈[C,D],對於每一個Z的答案就是P[B+C] - P[Z],固然若是當前的Z>=B+C須要考慮。而上面的區間+1操做能夠用差分來解決,或者線段樹也能夠。複雜度就是O(N)。數組

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <algorithm>
 4 #include <cstring>
 5 #include <cmath>
 6 #include <queue>
 7 #include <vector>
 8 #include <cstring>
 9 #include <functional>
10 #include <map>
11 #define LL long long
12 #define lson(rt) (rt << 1)
13 #define rson(rt) (rt << 1 | 1)
14 using namespace std;
15 
16 const int N = 1e6 + 10;
17 long long x[N], y[N];
18 
19 void solve ()
20 {
21     int a, b, c, d;
22     scanf("%d%d%d%d", &a, &b, &c, &d);
23     for(int i = a; i <= b; ++i) {
24         x[i + b] += 1;
25         x[i + c + 1] -= 1;
26     }
27     int n = b + c;
28     for(int i = 1; i <= n; ++i) x[i] += x[i - 1];
29     for(int i = 1; i <= n; ++i) y[i] += y[i - 1] + x[i];/*
30     for(int i = 1; i <= s; ++i) cout << x[i] << " ";
31     cout << endl;
32     for(int i = 1; i <= s; ++i) cout << y[i] << " ";
33     cout << endl;*/
34     long long tot = 0;
35     for(int i = c; i <= d; ++i) {
36         if(i >= b + c) break;
37         tot += (LL)y[b + c] - y[i];
38     }
39     //cout << "tot = " << tot << endl;
40     printf("%lld\n", tot);
41 }
42 
43 int main ()
44 {
45     solve();
46 
47     return 0;
48 }
相關文章
相關標籤/搜索