在此以前,《生成式深度學習》(Generative Deep Learning)(O’ Reilly Media 2019 年出版)一書做者 David Foster 爲咱們進行了回顧。算法
強化學習安全
若是用一句話來描述 2019 年的人工智能現狀,那極可能是:「強化學習(Reinforcement Learning )迴歸,看起來將永存」。網絡
這個領域已經存在幾十年,從概念上來說,它聽起來比監督式學習更像是一種合理的創造智能的學習機制。然而,直到 2015 年,DeepMind 纔得到了人們的關注,當時 DeepMind 使用深度 Q 學習(Deep Q-learning)建立了 Atari(雅達利) 遊戲的智能體,這是一種結合了經典強化學習算法和深度神經網絡的算法。2018 年,OpenAI 也經過 解決 Montezuma’s Revenge (一款被認爲難度特別高的 Atari 遊戲),從而在這一領域確立了本身的地位。架構
在過去的幾個月裏,圍繞強化學習開展的工做愈來愈多,這些工做從新喚起了學術界對強化學習的信念,在過去,人們曾經認爲強化學習效率低下,過於簡單,沒法解決複雜的問題,甚至連遊戲的問題也不能解決。app
天然語言處理機器學習
自 2018 年末以來,人們的注意力已經從過去的詞嵌入轉移到預訓練語言模型,這是天然語言處理從計算機視覺中借鑑來的一種技術。分佈式
自 Google BERT 、 ELMo 和 ulmfit 等系統在 2018 年末推出以來,天然語言處理一直風頭正茂,但今年的聚光燈被 OpenAI 的 GPT-2 給「奪走了」,它的表現引起了人們對 天然語言處理系統的道德使用的大討論。ide
計算機視覺技術工具
對人工智能來講,創造虛假但又逼真的人物和物體的圖像,已經再也不是前沿領域了。從 2014 年生成對抗網絡的引入 到 2019 年 NVDIA 開源的 StyleGAN ,都在對此進行證實。2019 年,人工智能創造的藝術品甚至脫離了過去幾年的假設性討論,成爲了今天 博物館裝置和拍賣 的一部分。性能
計算機視覺還被應用於一些具備重大商業和社會意義的領域,包括自動駕駛車輛和醫學。可是,人工智能算法在這些領域中的應用天然是緩慢的,由於它們直接與人類生活直接互動。至少到目前爲止,這些系統還不是徹底自主的,它們的目的,在於支持和加強人類操做員的能力。
2020 年,咱們須要直面的問題
在 2020 年即將到來之際,AI 前線團隊結合本身對行業的觀察列舉了將來一年可能的技術趨勢。
深度遷移學習將基於預訓練模型有更多改進
2019 年,因爲預訓練模型 BERT 以及 GPT 2.0 的發展,深度遷移學習成爲 AI 領域的熱門詞彙。準確地說,預訓練模型是天然語言處理領域新的 baseline,若是要在徹底不依賴 BERT 的基礎上,提出一個與 BERT 效果至關或者更好的新模型,目前來看可能性很是低。業界大部分 NLP 成果均是基於 BERT 的各類改進或者在對應業務場景上進行應用的,並且 BERT 的改進方向比較多,已經出現各類可用的變種 。
目前,XLNet、RoBERTa 等各類 BERT 的改進預訓練模型,雖然是經過增長預訓練的數據進一步提高效果,但除了增長數據,還作了許多模型方面的優化,這些突破都不是僅僅依靠堆數據就能帶來的成果。
2020 年,深度遷移學習將基於預訓練模型的演進而出現更多改進,好比對性能要求較高的場景須要對模型作一些改進和方案上的優化,雙向語言模型有可能出現訓練和預測不一致的現象,以及在長文本處理、文本生成任務上的不足。一樣值得期待的是,該領域將來可能會出現更加輕量級的在線服務模型。拓展到天然語言處理領域,除了不斷提高預訓練模型的效果,將來如何更好地與領域的知識圖譜融合,彌補預訓練模型中知識的不足,也是新的技術突破方向。
圖神經網絡的應用邊界將繼續擴展
圖神經網絡(GNN,Graph Neural Networks)是 2019 年 AI 領域最熱門的話題之一。雖然深度學習目前已經在諸多領域獲得了顯著的應用成果,但因果推理和可解釋性還是短板,這幾年學術界和工業界都在探索新的方向。圖神經網絡是用於圖結構數據的深度學習架構,將端到端學習與概括推理相結合,業界廣泛認爲其有望解決深度學習沒法處理的因果推理、可解釋性等一系列瓶頸問題,是將來 3 到 5 年的重點方向。
展望來年,最能夠肯定的一點是 GNN 依然會保持現在快速發展的態勢。從理論研究上看,不斷解構 GNN 相關的原理、特點與不足,進而提出相應改進與拓展,是很是值得關注的部分,如動態圖、時序圖、異構圖等。另外,一直以來研究 GNN 所用的標準數據集,如 Cora、PubMed,相對來講場景單1、異構性不足,難以對複雜的 GNN 模型進行準確評價。針對這一問題,近期斯坦福大學等開源的 OGB 標準數據集有望大大改善這個現狀,在新的評價體系下,哪些工做可以脫穎而出,值得期待。
從應用上看,除了在視覺推理、點雲學習、關係推理、科研、知識圖譜、推薦、反欺詐等領域有普遍應用外,在其餘的一些場景,如交通流量預測、醫療影像、組合優化等,也出現了一些 GNN 相關的工做。大致上看,如何準確有效地將圖數據與 GNN 兩者有機結合到相關場景,是應用上須要着重考慮的,相信來年,會出現更多這樣的工做來拓展 GNN 的應用邊界。此外,GNN 要真正在工業界大規模落地,底層系統架構方面仍需作大量工做。業界期待着一個更爲開放、高性能,且支持超大規模分佈式圖網絡計算的主流平臺的出現。
知識圖譜的自動化構建將成重要發展趨勢
做爲認知智能領域核心技術之一,目前知識圖譜已運用到語音助手、聊天機器人、智能問答等熱門的人工智能應用場景,並覆蓋泛互聯網、金融、政務、醫療等衆多領域。儘管發展火爆,但如今知識圖譜在構建和落地過程當中還面臨着諸多挑戰:對人工構建的依賴度還較高,仍然缺少從大規模數據裏獲取的手段;知識圖譜的構建技術成本很高等。爲解決上述問題,目前有不少公司都在作一些自動化構建知識圖譜的探索工做,如明略科技開發了自動圖譜構建工具,將一些中間構建過程自動化;騰訊正在基於聚類算法和強化學習結合的模式開發 schema 自動構建和根據反饋調整知識圖譜的能力....
今年,知識圖譜構建技術已經從過去的徹底人工編輯,進化到了場景化定製 NLP 知識抽取配合人工模板和審覈的模式,正在經歷人工構建 - 羣體構建 - 自動構建這樣的技術路線。自動化構建知識圖譜的特色是面向互聯網的大規模、開放、異構環境,利用機器學習技術和信息抽取技術自動獲取互聯網信息。
2020 年,能夠預見的是,大規模知識圖譜的自動化、高質量構建將成爲重要的發展趨勢,具體來看,知識圖譜的 schema 自動構建和圖表示推理將成爲關注的重點;另外一方面,隨着知識圖譜在各個行業深刻落地, 會有更多面向領域知識圖譜的自動化構建方案涌現出來,比較看好醫療、智能金融等相關知識圖譜及推理應用建設。隨着 5G 的到來,5G 知識圖譜的構建也值得期待。
5G 時代,多模態將爲 AI 等領域帶來新的活力
所謂「模態」,包括視覺、聽覺、語義等,多模態即便用計算機將多種「感官」信息的融合。近年來,人工智能技術的蓬勃發展使得機器智能不斷進步,多模態機器學習讓機器像人類同樣具備視覺、聽覺和語義感知、理解和決策能力,正成爲將來人工智能發展的必然方向,在天然人機交互、自動駕駛、VR/AR 等領域有巨大的應用價值。
伴隨着 5G 時代的到來,多模態在信息處理、內容理解與創做、用戶畫像、個性化推薦等方面都將迸發出新的活力。主要表如今如下幾點:
多模態與知識圖譜的結合,利用基於有監督深度學習的模型分別理解各個模態,同時結合知識圖譜深刻理解多模態中各模態的內部關係,進而提供更準確高效的方案。
目前不管單模態內容理解仍是多模態內容理解,都是以數據驅動的技術,如何將所「感知」到的東西進行推理,以免不合邏輯的識別結果也是將來研究的重點。
AI+ 產業落地值得關注
在產業落地方面,AI+ 金融、AI+ 教育、AI+ 醫療等都取得了不錯的成績。以金融領域爲例,金融行業應用 AI 的難點並不在於單純的技術能力上,由於金融行業對於數據安全和隱私問題的要求自然要比其餘行業更高。相對來講,金融行業的數字化、信息化基礎相對其餘行業更加完善,很多企業都擁有了本身的雲化基礎設施。
在這種狀況下,其餘行業可能直接對接 API 就能應用上人臉識別、文字識別等模型,但對於金融行業來講這種部署模式可能還相對粗糙。這時比較明顯的兩種部署方式分別是:一是技術服務者調整雲化方案,經過私有云、混合雲等多種部署,知足金融行業的特殊需求;二是金融機構選擇本身研發或採購技術,對自身雲平臺的能力進行 AI 更新。
預計在 2020 年,整個產業會涌現出更多優秀實踐案例,這些案例會不斷填補 AI 在不一樣場景下的不足,這些實踐中,哪些經驗值得借鑑?哪些坑須要規避?哪些場景戳中了痛點?哪些場景其實是僞需求?這些都須要咱們一一鑑別。
AI 前線將作些什麼?
過往,AI 前線報道並追蹤了大量 AI 技術在不一樣領域的落地實踐,好比騰訊優圖將計算機視覺技術應用於醫療領域的案例,可是這遠遠不夠。
2020 年,AI 前線將繼續追蹤技術迭代,爲讀者朋友帶來更多該領域內的最新發展示狀。與此同時,AI 前線將重點關注 AI+ 金融、AI+ 教育、AI+ 醫療三大領域的落地實踐,探尋 AI 技術在不一樣領域落地的難點和現狀。
目前內容團隊有全職編輯四人,組長鈺瑩,組員劉燕、陳思、冬梅(金牌譯者),此外另有兩位 InfoQ 高級技術編輯蔡芳芳和 Tina 擔任顧問。將來,AI 前線但願更加註重原創性、內容精細化、文字的流暢與易讀性,將更多有趣、有意義、有亮點、有啓示的案例分享給從業人員。同時也歡迎業界、專家朋友向咱們投稿,投稿郵箱:lisa.zhao@geekbang.com。
不只如此,本公衆號還將與 AICon 全球人工智能與機器學習技術大會深度合做,在會前、會中、會後爲你報道來自 Google、Uber、英特爾、阿里巴巴、騰訊、百度、京東、滴滴、美團、小米等一系列海內外科技公司的技術實踐。
如下爲過去不久的AICon 全球人工智能與機器學習技術大會北京站詳情:
在這裏,你不只能夠看到國內外 AI 領域最前沿的技術,還能看到這些技術的最佳實踐。
各位 AI 領域的從業者,大家只管用代碼點亮夢想,咱們負責點亮大家。
2019 年精選文章:
《爆款新模型全面碾壓 BERT?預訓練語言模型井噴的 2019》