題意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\)php
n較小,考慮寫成前綴和的形式,計算\(S(n,m)=\sum_{i=1}^m \varphi(in)\)ios
一開始想出
\[ n= \prod_i p_i,\ \varphi(in) = \varphi(i) \cdot \varphi(\frac{n}{d})\cdot d,\ d=(n,i) \]
比較好想,共有的質因子應該乘\(p\)而不是\(p-1\)函數
而後帶進去枚舉gcd用莫比烏斯反演的套路,中間的函數很奇怪很差算前綴和...spa
orz了題解,發現題解使用\(\varphi * 1 =id\)來替換
\[ \varphi(in) = \varphi(i) \cdot \varphi(\frac{n}{d})\cdot \sum_{e\mid d} \varphi(e) = \varphi(i) \cdot \sum_{e\mid d}\varphi(\frac{n}{e}) \]
由於n是不一樣質因子的乘積,因此能夠把兩個\(\varphi\)乘起來code
這一步替換和用\(\mu * 1 = \epsilon\)替換有殊途同歸之妙,都是將\(gcd\)等於的限制弱化了,變成了整除的關係get
推倒後獲得
\[ S(n,m) = \sum_{d\mid n}\varphi(\frac{n}{d})\cdot S(d, \lfloor \frac{m}{d} \rfloor) \]
對於n不是不一樣質因子的乘積的,根據\(\varphi\)的公式,多的質因子次數直接提出來乘上就好了string
而後記憶化搜索,\(n=1\)就是\(\varphi\)的前綴和it
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <map> using namespace std; typedef long long ll; const int N=1664512, U=1664510, mo = 1e9+7; inline int read(){ char c=getchar(); int x=0,f=1; while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();} while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();} return x*f; } int n, m; inline void mod(int &x) {if(x>=mo) x-=mo; else if(x<0) x+=mo;} bool notp[N]; int p[N/10], phi[N], pr[N]; void sieve(int n) { phi[1]=1; pr[1] = 1; for(int i=2; i<=n; i++) { if(!notp[i]) p[++p[0]] = i, phi[i] = i-1, pr[i] = i; for(int j=1; j <= p[0] && i*p[j] <= n; j++) { int t = i*p[j]; notp[ t ] = 1; if(i % p[j] == 0) { phi[t] = phi[i] * p[j]; pr[t] = pr[i]; break; } phi[t] = phi[i] * (p[j] - 1); pr[t] = pr[i] * p[j]; } mod(phi[i] += phi[i-1]); } } namespace ha { const int p = 1001001; struct meow{int ne, val, r;} e[3000]; int cnt=1, h[p]; inline void insert(int x, int val) { int u = x % p; for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return; e[++cnt] = (meow){h[u], val, x}; h[u] = cnt; } inline int quer(int x) { int u = x % p; for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return e[i].val; return -1; } } using ha::insert; using ha::quer; int dj_s(int n) { if(n <= U) return phi[n]; if(quer(n) != -1) return quer(n); int ans = (ll) n * (n+1) / 2 %mo, r; for(int i=2; i<=n; i=r+1) { r = n/(n/i); mod(ans -= (ll) dj_s(n/i) * (r-i+1) %mo); } insert(n, ans); return ans; } inline int Pow(int a, int b) { int ans=1; for(; b; b>>=1, a=a*a) if(b&1) ans=ans*a; return ans; } inline ll Phi(int n) { int ans = 1; if(n <= U) {mod(ans = phi[n] - phi[n-1]); return ans;} int m = sqrt(n); for(int i=1; p[i] <= m; i++) if(n % p[i] == 0) { int a = 0; while(n % p[i] == 0) a++, n /= p[i]; ans *= Pow(p[i], a-1) * (p[i] - 1); } return ans; } map<int, int> Map[N]; int S(int n, int m) { if(m == 0) return 0; if(n == 1) return dj_s(m); if(Map[n][m]) return Map[n][m]; //printf("S %d %d\n", n, m); int ans = 0; for(int i=1; i*i <= n; i++) if(n%i == 0) { int j = n/i; mod(ans += Phi(j) * S(i, m/i) %mo); if(i != j) mod(ans += Phi(i) * S(j, m/j) %mo); } Map[n][m]=ans; return ans; } int main() { freopen("in", "r", stdin); sieve(U); n=read(); m=read(); int ans = 0; for(int i=1; i<=n; i++) mod(ans += (ll) i / pr[i] * S(pr[i], m) %mo); //for(int i=1; i<=n; i++) printf("nnnnnnnn %d %d\n", i, S(i, m)); printf("%d\n", ans); }