參考文獻 Tensorflow官方文檔 tf.transpose函數解析 tf.slice函數解析 CIFAR10/CIFAR100數據集介紹 tf.train.shuffle_batch函數解析 Python urllib urlretrieve函數解析python
import os import tarfile import tensorflow as tf from six.moves import urllib from tensorflow.python.framework import ops ops.reset_default_graph() # 更改工做目錄 abspath = os.path.abspath(__file__) # 獲取當前文件絕對地址 # E:\GitHub\TF_Cookbook\08_Convolutional_Neural_Networks\03_CNN_CIFAR10\ostest.py dname = os.path.dirname(abspath) # 獲取文件所在文件夾地址 # E:\GitHub\TF_Cookbook\08_Convolutional_Neural_Networks\03_CNN_CIFAR10 os.chdir(dname) # 轉換目錄文件夾到上層 # Start a graph session # 初始化Session sess = tf.Session() # 設置模型超參數 batch_size = 128 # 批處理數量 data_dir = 'temp' # 數據目錄 output_every = 50 # 輸出訓練loss值 generations = 20000 # 迭代次數 eval_every = 500 # 輸出測試loss值 image_height = 32 # 圖片高度 image_width = 32 # 圖片寬度 crop_height = 24 # 裁剪後圖片高度 crop_width = 24 # 裁剪後圖片寬度 num_channels = 3 # 圖片通道數 num_targets = 10 # 標籤數 extract_folder = 'cifar-10-batches-bin' # 指數學習速率衰減參數 learning_rate = 0.1 # 學習率 lr_decay = 0.1 # 學習率衰減速度 num_gens_to_wait = 250. # 學習率更新週期 # 提取模型參數 image_vec_length = image_height*image_width*num_channels # 將圖片轉化成向量所需大小 record_length = 1 + image_vec_length # ( + 1 for the 0-9 label) # 讀取數據 data_dir = 'temp' if not os.path.exists(data_dir): # 當前目錄下是否存在temp文件夾 os.makedirs(data_dir) # 若是當前文件目錄下不存在這個文件夾,建立一個temp文件夾 # 設定CIFAR10下載路徑 cifar10_url = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' # 檢查這個文件是否存在,若是不存在下載這個文件 data_file = os.path.join(data_dir, 'cifar-10-binary.tar.gz') # temp\cifar-10-binary.tar.gz if os.path.isfile(data_file): pass else: # 回調函數,當鏈接上服務器、以及相應的數據塊傳輸完畢時會觸發該回調,咱們能夠利用這個回調函數來顯示當前的下載進度。 # block_num已經下載的數據塊數目,block_size數據塊大小,total_size下載文件總大小 def progress(block_num, block_size, total_size): progress_info = [cifar10_url, float(block_num*block_size)/float(total_size)*100.0] print('\r Downloading {} - {:.2f}%'.format(*progress_info), end="") # urlretrieve(url, filename=None, reporthook=None, data=None) # 參數 finename 指定了保存本地路徑(若是參數未指定,urllib會生成一個臨時文件保存數據。) # 參數 reporthook 是一個回調函數,當鏈接上服務器、以及相應的數據塊傳輸完畢時會觸發該回調,咱們能夠利用這個回調函數來顯示當前的下載進度。 # 參數 data 指 post 到服務器的數據,該方法返回一個包含兩個元素的(filename, headers)元組,filename 表示保存到本地的路徑,header 表示服務器的響應頭。 # 此處 url=cifar10_url,filename=data_file,reporthook=progress filepath, _ = urllib.request.urlretrieve(cifar10_url, data_file, progress) # 解壓文件 tarfile.open(filepath, 'r:gz').extractall(data_dir) # Define CIFAR reader # 定義CIFAR讀取器 def read_cifar_files(filename_queue, distort_images=True): reader = tf.FixedLengthRecordReader(record_bytes=record_length) # 返回固定長度的文件記錄 record_length函數參數爲一條圖片信息即1+32*32*3 key, record_string = reader.read(filename_queue) # 此處調用tf.FixedLengthRecordReader.read函數返回鍵值對 record_bytes = tf.decode_raw(record_string, tf.uint8) # 讀出來的原始文件是string類型,此處咱們須要用decode_raw函數將String類型轉換成uint8類型 image_label = tf.cast(tf.slice(record_bytes, [0], [1]), tf.int32) # 見slice函數用法,取從0號索引開始的第一個元素。並將其轉化爲int32型數據。其中存儲的是圖片的標籤 # 截取圖像 image_extracted = tf.reshape(tf.slice(record_bytes, [1], [image_vec_length]), [num_channels, image_height, image_width]) # 從1號索引開始提取圖片信息。這和此數據集存儲圖片信息的格式相關。 # CIFAR-10數據集中 """第一個字節是第一個圖像的標籤,它是一個0-9範圍內的數字。接下來的3072個字節是圖像像素的值。 前1024個字節是紅色通道值,下1024個綠色,最後1024個藍色。值以行優先順序存儲,所以前32個字節是圖像第一行的紅色通道值。 每一個文件都包含10000個這樣的3073字節的「行」圖像,但沒有任何分隔行的限制。所以每一個文件應該徹底是30730000字節長。""" # Reshape image image_uint8image = tf.transpose(image_extracted, [1, 2, 0]) # 詳見tf.transpose函數,將[channel,image_height,image_width]轉化爲[image_height,image_width,channel]的數據格式。 reshaped_image = tf.cast(image_uint8image, tf.float32) # 將圖片剪裁或填充至合適大小 final_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, crop_width, crop_height) if distort_images: # 將圖像水平隨機翻轉,改變亮度和對比度。 final_image = tf.image.random_flip_left_right(final_image) final_image = tf.image.random_brightness(final_image, max_delta=63) final_image = tf.image.random_contrast(final_image, lower=0.2, upper=1.8) # 對圖片作標準化處理 """Linearly scales `image` to have zero mean and unit norm. This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average of all values in image, and `adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`. `stddev` is the standard deviation of all values in `image`. It is capped away from zero to protect against division by 0 when handling uniform images.""" final_image = tf.image.per_image_standardization(final_image) return (final_image, image_label) # Create a CIFAR image pipeline from reader # 從閱讀器中構造CIFAR圖片管道 def input_pipeline(batch_size, train_logical=False): # train_logical標誌用於區分讀取訓練和測試數據集 if train_logical: files = [os.path.join(data_dir, extract_folder, 'data_batch_{}.bin'.format(i)) for i in range(1, 6)] # data_dir=tmp # extract_folder=cifar-10-batches-bin else: files = [os.path.join(data_dir, extract_folder, 'test_batch.bin')] filename_queue = tf.train.string_input_producer(files) image, label = read_cifar_files(filename_queue) print(train_logical, 'after read_cifar_files ops image', sess.run(tf.shape(image))) print(train_logical, 'after read_cifar_files ops label', sess.run(tf.shape(label))) # min_after_dequeue defines how big a buffer we will randomly sample # from -- bigger means better shuffling but slower start up and more # memory used. # capacity must be larger than min_after_dequeue and the amount larger # determines the maximum we will prefetch. Recommendation: # min_after_dequeue + (num_threads + a small safety margin) * batch_size min_after_dequeue = 5000 capacity = min_after_dequeue + 3*batch_size # 批量讀取圖片數據 example_batch, label_batch = tf.train.shuffle_batch([image, label], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue) print(train_logical, 'after shuffle_batch ops image', sess.run(tf.shape(image))) print(train_logical, 'after shuffle_batch ops example_batch', sess.run(tf.shape(example_batch))) print(train_logical, 'after shuffle_batch ops label', sess.run(tf.shape(label))) print(train_logical, 'after shuffle_batch ops label_batch', sess.run(tf.shape(label_batch))) return (example_batch, label_batch) # 獲取數據 print('Getting/Transforming Data.') # 初始化數據管道獲取訓練數據和對應標籤 images, targets = input_pipeline(batch_size, train_logical=True) # 獲取測試數據和對應標籤 test_images, test_targets = input_pipeline(batch_size, train_logical=False) sess.close() # True after read_cifar_files ops image [24 24 3] # True after read_cifar_files ops label [1] # True after shuffle_batch ops image [24 24 3] # True after shuffle_batch ops example_batch [128 24 24 3] # True after shuffle_batch ops label [1] # True after shuffle_batch ops label_batch [128 1] # False after read_cifar_files ops image [24 24 3] # False after read_cifar_files ops label [1] # False after shuffle_batch ops image [24 24 3] # False after shuffle_batch ops example_batch [128 24 24 3] # False after shuffle_batch ops label [1] # False after shuffle_batch ops label_batch [128 1]