day-15 用opencv怎麼掃描圖像,利用查找表和計時

1、本節知識預覽

  一、  怎樣遍歷圖像的每個像素點?html

  二、  opencv圖像矩陣怎麼被存儲的?算法

  三、  怎樣衡量咱們算法的性能?數組

  四、  什麼是查表,爲何要使用它們?多線程

2、什麼是查表,爲何要使用它們?

  假設一張三通道RGB圖像,每一個像素通道有256種不一樣顏色取值,那麼一個像素點可能有256*256*256(1600多萬)種可能顏色取值,這對於實際計算來講,開銷是至關大的。而實際計算中,只須要少許的顏色值就能達到相同的效果。經常使用的一種方法是進行顏色空間縮減。用以下方法,咱們能夠將顏色空間取值減小10倍:dom

 

  然而若是對每一個像素點,都應用一次公式減小顏色空間取值,開銷仍然很大,所以咱們引入一個新方法:查表。  ide

	//定義查表
	uchar table[256];
	int divideWidth = 10;
	for (int i = 0;i < 256; ++i)
	{
		table[i] = (uchar)(divideWidth*(i/divideWidth));
	}

  divideWith能夠簡單理解爲取值減小的倍數,例如取值爲10,顏色取值由256種可能變成25種。單個像素也只有25*25*25(15625)種可能,較以前1600多萬種,計算量極大減小。而後將某個像素點某個通道的值,做爲查表的數組索引,能夠直接獲取到最後的顏色值,避免了數學運算的工做量。函數

3、怎樣衡量咱們算法的性能?

  opencv中,咱們須要常常衡量一個接口/算法的時間,經過使用Opencv兩個自帶的函數cv::getTickCount()和cv::getTickFrequency()能夠實現,前者記錄從系統啓動開始CPU計數次數,後者記錄CPU計數頻率,可用以下代碼實現時間衡量:  性能

double t = (double)getTickCount();

// do something ...

t = ((double)getTickCount() - t)/getTickFrequency();

cout << "Times passed in seconds: " << t << endl;

4、opencv圖像矩陣怎麼被存儲的?

  再來回顧下以前的問題,圖像是怎麼在內存中被存儲的。假設咱們的圖像是一張n*m的灰度圖像,在內存中的存儲方式將會是這樣的:測試

   

  若是圖像是一張RGB多通道圖像,實際在內存中存儲是這樣的:編碼

   

 

  能夠注意到,通道順序是BGR而不是原有的RGB。另外因爲咱們的內存足夠大,咱們的矩陣能夠一行接一行連續被存儲,這樣能夠加快圖像掃描的速度,經過cv::Mat::isContinuous()函數確認圖像是否被連續存儲。

5、怎樣遍歷圖像的每個像素點?

  一談到性能,沒有什麼能比C 風格的[]數組訪問操做更高效了,所以能夠用以下高效的方式實現查表法減小顏色空間取值:

Mat& ScanImageAndReduceC(Mat& I,const uchar* const table)
{
	//accept only char type matrices
	CV_Assert(I.depth() == CV_8U);
	int channels = I.channels();
	int nRows = I.rows;
	int nCols = I.cols*channels;
	if(I.isContinuous())
	{
		nCols *= nRows;
		nRows = 1;
	}

	int i,j;
	uchar *p;
	for ( i = 0; i < nRows; ++i)
	{
		p = I.ptr<uchar>(i);
		for(j = 0;j < nCols;++j)
		{
			p[j] = table[p[j]];
		}
	}
	return I;
}

  此外,咱們還能夠經過opencv提供的遞歸方法實現圖像的遍歷:

Mat& ScanImageAndReduceIterator(Mat& I,const uchar* const table)
{
	CV_Assert(I.depth() == CV_8U);
	const int channels = I.channels();
	switch(channels)
	{
	case 1:
		{
			MatIterator_<uchar> it,end;
			for( it = I.begin<uchar>(),end = I.end<uchar>();it != end;++it)
			{
				*it = table[*it];
			}
			break;
		}
	case 3:
		{
			MatIterator_<Vec3b> it,end;
			for(it = I.begin<Vec3b>(),end = I.end<Vec3b>();it != end;++it)
			{
				(*it)[0] = table[(*it)[0]];
				(*it)[1] = table[(*it)[1]];
				(*it)[2] = table[(*it)[2]];
			}
			break;
		}
	}
	return I;
}

  同時,還可使用at方法實時計算圖像座標實現圖像的遍歷,新定義Mat_<Vec3b> _I是爲了編碼偷懶的方式,能夠直接使用()運算符而不是at函數:

Mat& ScanImageAndReduceRandomAccess(Mat& I,const uchar * const table)
{
	CV_Assert(I.depth() == CV_8U);
	const int channels = I.channels();
	switch(channels)
	{
	case 1:
		{
			for (int i = 0;i < I.rows;++i)
				for (int j = 0; j < I.cols; ++j)
				{
					I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
				}
			break;
		}
	case 3:
		{
			Mat_<Vec3b> _I = I;
			for (int i = 0;i < I.rows; ++i)
				for (int j = 0;j < I.cols; ++j)
				{
					//_I.at<Vec3b>(i,j)[0] = table[_I.at<Vec3b>(i,j)[0]];
					//_I.at<Vec3b>(i,j)[1] = table[_I.at<Vec3b>(i,j)[1]];
					//_I.at<Vec3b>(i,j)[2] = table[_I.at<Vec3b>(i,j)[2]];
					_I(i,j)[0] = table[_I(i,j)[0]];
					_I(i,j)[1] = table[_I(i,j)[1]];
					_I(i,j)[2] = table[_I(i,j)[2]];
				}
			I = _I;
			break;
		}
	}
	return I;
}

  OpenCV庫也爲咱們提供一個快速查表的庫函數:

Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.ptr();
for( int i = 0; i < 256; ++i)
    p[i] = table[i];
LUT(I, lookUpTable, J);

  最後,咱們附上整個程序源碼,經過調用攝像頭,獲取圖像,而後對前100幀圖像利用查表法進行顏色空間縮減:

 

#include<opencv2/opencv.hpp> 
#include<cv.h>
 
using namespace cv; 
using namespace std;

Mat& ScanImageAndReduceC(Mat& I,const uchar* const table)
{
	//accept only char type matrices
	CV_Assert(I.depth() == CV_8U);
	int channels = I.channels();
	int nRows = I.rows;
	int nCols = I.cols*channels;
	if(I.isContinuous())
	{
		nCols *= nRows;
		nRows = 1;
	}

	int i,j;
	uchar *p;
	for ( i = 0; i < nRows; ++i)
	{
		p = I.ptr<uchar>(i);
		for(j = 0;j < nCols;++j)
		{
			p[j] = table[p[j]];
		}
	}
	return I;
}

Mat& ScanImageAndReduceIterator(Mat& I,const uchar* const table)
{
	CV_Assert(I.depth() == CV_8U);
	const int channels = I.channels();
	switch(channels)
	{
	case 1:
		{
			MatIterator_<uchar> it,end;
			for( it = I.begin<uchar>(),end = I.end<uchar>();it != end;++it)
			{
				*it = table[*it];
			}
			break;
		}
	case 3:
		{
			MatIterator_<Vec3b> it,end;
			for(it = I.begin<Vec3b>(),end = I.end<Vec3b>();it != end;++it)
			{
				(*it)[0] = table[(*it)[0]];
				(*it)[1] = table[(*it)[1]];
				(*it)[2] = table[(*it)[2]];
			}
			break;
		}
	}
	return I;
}

Mat& ScanImageAndReduceRandomAccess(Mat& I,const uchar * const table)
{
	CV_Assert(I.depth() == CV_8U);
	const int channels = I.channels();
	switch(channels)
	{
	case 1:
		{
			for (int i = 0;i < I.rows;++i)
				for (int j = 0; j < I.cols; ++j)
				{
					I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
				}
			break;
		}
	case 3:
		{
			Mat_<Vec3b> _I = I;
			for (int i = 0;i < I.rows; ++i)
				for (int j = 0;j < I.cols; ++j)
				{
					//_I.at<Vec3b>(i,j)[0] = table[_I.at<Vec3b>(i,j)[0]];
					//_I.at<Vec3b>(i,j)[1] = table[_I.at<Vec3b>(i,j)[1]];
					//_I.at<Vec3b>(i,j)[2] = table[_I.at<Vec3b>(i,j)[2]];
					_I(i,j)[0] = table[_I(i,j)[0]];
					_I(i,j)[1] = table[_I(i,j)[1]];
					_I(i,j)[2] = table[_I(i,j)[2]];
				}
			I = _I;
			break;
		}
	}
	return I;
}

Mat& ScanImageAndReduceLut(Mat& I,Mat& J,const uchar * const table)
{
	Mat lookUpTable(1,256,CV_8U);
	uchar* p = lookUpTable.ptr();
	for ( int i = 0;i < 256; ++i)
		p[i] = table[i];
	LUT(I,lookUpTable,J);
	return J;
}

int main( ) 
{ 
	Mat frame_input,frame_src,frame_reduce_c,frame_reduce_iterator,frame_reduce_random_access,frame_reduce_lut;
	VideoCapture capture(0);
	if(capture.isOpened())
	{
		printf("打開攝像頭成功\n");
		capture >> frame_input;
		printf("圖像分辨率爲:%d * %d,通道數爲%d\n",frame_input.rows,frame_input.cols,frame_input.channels());
	}



	//定義查表
	uchar table[256];
	int divideWidth = 30;
	for (int i = 0;i < 256; ++i)
	{
		table[i] = (uchar)(divideWidth*(i/divideWidth));
	}

	float time_cnts_c = 0,time_cnts_iterator = 0,time_cnts_random_access = 0,time_cnts_lut = 0;
	double tick = 0,number = 0;

	while(number < 100){
		
		++number;
		printf("讀取第%f幀圖像\n",number);

		capture >> frame_input;   
		if(frame_input.empty()){
			printf("--(!) No captured frame -- Break!");
		}
		else{

			frame_src = frame_input.clone();
			frame_reduce_c = frame_input.clone();
			frame_reduce_iterator = frame_input.clone();
			frame_reduce_random_access = frame_input.clone();

			tick = getTickCount();
			ScanImageAndReduceC(frame_reduce_c,table);
			time_cnts_c += ((double)getTickCount()- tick)*1000 / getTickFrequency();

			tick = getTickCount();
			ScanImageAndReduceIterator(frame_reduce_iterator,table);
			time_cnts_iterator += ((double)getTickCount()- tick)*1000 / getTickFrequency();

			tick = getTickCount();
			ScanImageAndReduceRandomAccess(frame_reduce_random_access,table);
			time_cnts_random_access += ((double)getTickCount()- tick)*1000 / getTickFrequency();

			tick = getTickCount();
			ScanImageAndReduceLut(frame_src,frame_reduce_lut,table);
			time_cnts_lut += ((double)getTickCount()- tick)*1000 / getTickFrequency();


			imshow("原始圖像", frame_src);
			imshow("ScanImageAndReduceC",frame_reduce_c);
			imshow("ScanImageAndReduceIterator",frame_reduce_iterator);
			imshow("ScanImageAndReduceRandomAccess",frame_reduce_random_access);
			imshow("ScanImageAndReduceLut",frame_reduce_lut);

		}
 		waitKey(10); 
	}

	printf("time_cnts_c:%f\n",time_cnts_c/100);
	printf("time_cnts_iterator:%f\n",time_cnts_iterator/100);
	printf("time_cnts_random_access:%f\n",time_cnts_random_access/100);
	printf("time_cnts_lut:%f\n",time_cnts_lut/100);


	waitKey(1000000); 
	return 0;    
} 

6、實驗結果

  opencv教程給出的時間參考以下:

  https://docs.opencv.org/master/db/da5/tutorial_how_to_scan_images.html

Method

Time

Efficient Way

79.4717 milliseconds

Iterator

83.7201 milliseconds

On-The-Fly RA

93.7878 milliseconds

LUT function

32.5759 milliseconds

 

  實際在咱們環境上(480*640,3通道)測試的結果以下:

Method

Time

Efficient Way

4.605026 milliseconds

Iterator

92.846123 milliseconds

On-The-Fly RA

240.321487 milliseconds

LUT function

3.741437 milliseconds

  實驗結果代表,使用opencv自帶的LUT函數,效率最高。這是由於OpenCV內建的多線程緣由。其次是c語言高效的[]數組訪問方式。

相關文章
相關標籤/搜索