以前須要評估圖像質量來篩選成像質量不錯的圖片,去除因爲對焦,運動等形成的模糊圖像,因此在構建數據集的時候考慮用opencv對清晰的圖片進行處理得到模糊的圖片從而進行訓練。html
通常來講,運動模糊的圖像都是朝同一方向運動的,那麼就能夠利用cv2.filter2D
函數。python
import numpy as np def motion_blur(image, degree=10, angle=20): image = np.array(image) # 這裏生成任意角度的運動模糊kernel的矩陣, degree越大,模糊程度越高 M = cv2.getRotationMatrix2D((degree/2, degree/2), angle, 1) motion_blur_kernel = np.diag(np.ones(degree)) motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree)) motion_blur_kernel = motion_blur_kernel / degree blurred = cv2.filter2D(image, -1, motion_blur_kernel) # convert to uint8 cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX) blurred = np.array(blurred, dtype=np.uint8) return blurred
opencv提供了GaussianBlur
函數(具體參見這裏).app
image = cv2.GaussianBlur(image, ksize=(degree, degree), sigmaX=0, sigmaY=0)
其實就是在每一個像素點添加隨機擾動:dom
def gaussian_noise(image, degree=None): row, col, ch = image.shape mean = 0 if not degree: var = np.random.uniform(0.004, 0.01) else: var = degree sigma = var ** 0.5 gauss = np.random.normal(mean, sigma, (row, col, ch)) gauss = gauss.reshape(row, col, ch) noisy = image + gauss cv2.normalize(noisy, noisy, 0, 255, norm_type=cv2.NORM_MINMAX) noisy = np.array(noisy, dtype=np.uint8) return noisy