本文主要研究下FluxInterval的機制java
reactor-core-3.1.3.RELEASE-sources.jar!/reactor/core/publisher/FluxInterval.javareact
/** * Periodically emits an ever increasing long value either via a ScheduledExecutorService * or a custom async callback function * @see <a href="https://github.com/reactor/reactive-streams-commons">Reactive-Streams-Commons</a> */ final class FluxInterval extends Flux<Long> { final Scheduler timedScheduler; final long initialDelay; final long period; final TimeUnit unit; FluxInterval( long initialDelay, long period, TimeUnit unit, Scheduler timedScheduler) { if (period < 0L) { throw new IllegalArgumentException("period >= 0 required but it was " + period); } this.initialDelay = initialDelay; this.period = period; this.unit = Objects.requireNonNull(unit, "unit"); this.timedScheduler = Objects.requireNonNull(timedScheduler, "timedScheduler"); } @Override public void subscribe(CoreSubscriber<? super Long> actual) { Worker w = timedScheduler.createWorker(); IntervalRunnable r = new IntervalRunnable(actual, w); actual.onSubscribe(r); try { w.schedulePeriodically(r, initialDelay, period, unit); } catch (RejectedExecutionException ree) { if (!r.cancelled) { actual.onError(Operators.onRejectedExecution(ree, r, null, null, actual.currentContext())); } } } }
能夠看到這裏利用Scheduler來建立一個定時調度任務IntervalRunnable
static final class IntervalRunnable implements Runnable, Subscription, InnerProducer<Long> { final CoreSubscriber<? super Long> actual; final Worker worker; volatile long requested; static final AtomicLongFieldUpdater<IntervalRunnable> REQUESTED = AtomicLongFieldUpdater.newUpdater(IntervalRunnable.class, "requested"); long count; volatile boolean cancelled; IntervalRunnable(CoreSubscriber<? super Long> actual, Worker worker) { this.actual = actual; this.worker = worker; } @Override public CoreSubscriber<? super Long> actual() { return actual; } @Override @Nullable public Object scanUnsafe(Attr key) { if (key == Attr.CANCELLED) return cancelled; return InnerProducer.super.scanUnsafe(key); } @Override public void run() { if (!cancelled) { if (requested != 0L) { actual.onNext(count++); if (requested != Long.MAX_VALUE) { REQUESTED.decrementAndGet(this); } } else { cancel(); actual.onError(Exceptions.failWithOverflow("Could not emit tick " + count + " due to lack of requests" + " (interval doesn't support small downstream requests that replenish slower than the ticks)")); } } } @Override public void request(long n) { if (Operators.validate(n)) { Operators.addCap(REQUESTED, this, n); } } @Override public void cancel() { if (!cancelled) { cancelled = true; worker.dispose(); } } }
這裏重點看requested變量,run方法每次判斷requested,若是requested爲0則銷燬worker,不然則每次發射一個元素計數就減一
而subscriber若是有繼續request的話,則會增長requested的值
public static void main(String[] args) throws InterruptedException { Flux<Long> flux = Flux.interval(Duration.ofMillis(1)) .doOnNext(e -> { System.out.println(e); }).doOnError(e -> e.printStackTrace()); System.out.println("begin to subscribe"); flux.subscribe(e -> { System.out.println(e); try { TimeUnit.MINUTES.sleep(30); } catch (InterruptedException e1) { e1.printStackTrace(); } }); TimeUnit.MINUTES.sleep(30); }
這個例子requested是Long.MAX_VALUE,可是因爲subscribe的線程跟運行interval的線程同樣,因爲裏頭執行了sleep操做也致使interval的調度也跟着阻塞住了。
public static void main(String[] args) throws InterruptedException { Flux<Long> flux = Flux.interval(Duration.ofMillis(1)) .doOnNext(e -> { System.out.println(e); }) //NOTE 這裏request prefetch=256個 .publishOn(Schedulers.newElastic("publish-thread")) .doOnError(e -> e.printStackTrace()); System.out.println("begin to subscribe"); AtomicInteger count = new AtomicInteger(0); //NOTE 得有subscribe才能觸發request flux.subscribe(e -> { LOGGER.info("receive:{}",e); try { //NOTE 使用publishOn將subscribe與interval的線程分開 if(count.get() == 0){ TimeUnit.MINUTES.sleep(2); } count.incrementAndGet(); } catch (InterruptedException e1) { e1.printStackTrace(); } }); TimeUnit.MINUTES.sleep(30); }
使用publishOn將subscriber線程與interval線程隔離,使其sleep不阻塞interval
這裏publishOn隱含了一個prefetch參數,默認是Queues.SMALL_BUFFER_SIZE即Math.max(16,Integer.parseInt(System.getProperty("reactor.bufferSize.small", "256")));
public final Flux<T> publishOn(Scheduler scheduler) { return publishOn(scheduler, Queues.SMALL_BUFFER_SIZE); } final Flux<T> publishOn(Scheduler scheduler, boolean delayError, int prefetch, int lowTide) { if (this instanceof Callable) { if (this instanceof Fuseable.ScalarCallable) { @SuppressWarnings("unchecked") Fuseable.ScalarCallable<T> s = (Fuseable.ScalarCallable<T>) this; try { return onAssembly(new FluxSubscribeOnValue<>(s.call(), scheduler)); } catch (Exception e) { //leave FluxSubscribeOnCallable defer exception call } } @SuppressWarnings("unchecked") Callable<T> c = (Callable<T>)this; return onAssembly(new FluxSubscribeOnCallable<>(c, scheduler)); } return onAssembly(new FluxPublishOn<>(this, scheduler, delayError, prefetch, lowTide, Queues.get(prefetch))); }
這裏使用Queues.get(prefetch)建立一個間接的隊列來盛放元素
這個實例最後輸出git
//...... 21:06:03.108 [publish-thread-2] INFO com.example.demo.FluxTest - receive:254 21:06:03.108 [publish-thread-2] INFO com.example.demo.FluxTest - receive:255 reactor.core.Exceptions$OverflowException: Could not emit tick 256 due to lack of requests (interval doesn't support small downstream requests that replenish slower than the ticks) at reactor.core.Exceptions.failWithOverflow(Exceptions.java:215) at reactor.core.publisher.FluxInterval$IntervalRunnable.run(FluxInterval.java:121) at reactor.core.scheduler.PeriodicWorkerTask.call(PeriodicWorkerTask.java:59) at reactor.core.scheduler.PeriodicWorkerTask.run(PeriodicWorkerTask.java:73) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)
因爲第一次request默認是256,以後在發射256個元素以後,subscriber沒有跟上,致使interval的worker被cancel掉了,因而後續消費完256個元素以後,緊挨着就是OverflowException這個異常
reactor自己並不依賴線程,只有interval,delayElements等方法纔會建立線程。而reactor自己是觀察者設計模式的擴展,採用push+backpressure模式,一開始調用subscribe方法就觸發request N請求推送數據,以後publisher就onNext推送數據,直到complete或cancel。實例1是由於線程阻塞致使interval的onNext阻塞,實例2是interval被cancel掉致使flux關閉。github