[HNOI2012][BZOJ2732] 射箭 [二分+半平面交]

題面

BZOJ題面php

思路

半平面交代碼講解戳這裏,用的就是這道題html

咱們射箭的函數形如$y=Ax^2+Bx$node

考慮每個靶子$(x_0,y_1,y_2)$,其實是關於$A,B$的不等式限制條件ios

咱們只要求出有沒有$(A,B)$知足全部$2*n$個限制條件就能夠了git

考慮一個限制條件$y_1\leq Ax_0^2+Bx_0\leq y_2$函數

把一個$x_0$除過去,能夠獲得$B$關於$A$的半平面兩個:spa

$B\geq -x_0A+\frac{y_1}{x_0}$code

$B\leq -x_0A+\frac{y_2}{x_0}$htm

實際上就是兩條平行線(不過這個性質沒什麼用)blog

顯然題目具備二分性,二分答案,每次對於前一部分的全部限制作半平面交便可

技巧

能夠先把全部半平面(包括四個外圍限制)排個序,而後每次二分求解的時候掃一遍提取出本次求解須要的

半平面交若是能夠剩下一個點(本題是能夠的),須要在判斷點是否在線的右邊的函數裏面修改條件,不能包括點在線上的狀況

半平面交模板參考這道題:全部線段有向,從a到b,半平面交求全部有向線段的左邊半平面的交,外圍框子是逆時針的

同一份半平面交裏面的全部點線關係都是一致的(都是左邊or右邊)

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<cmath>
#define eps 1e-18
#define inf 1e33
#define ll long long
using namespace std;
inline int read(){
    int re=0,flag=1;char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-') flag=-1;
        ch=getchar();
    }
    while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
    return re*flag;
}
inline bool sign(long double x){
    if(x>eps) return 1;
    if(x<-eps) return -1;
    return 0;
}
int n,m;
struct node{
    long double x,y;
    node(long double xx=0.0,long double yy=0.0){x=xx;y=yy;}
    inline friend node operator +(const node &a,const node &b){return node(a.x+b.x,a.y+b.y);}
    inline friend node operator -(const node &a,const node &b){return node(a.x-b.x,a.y-b.y);}
    inline friend node operator *(const node &a,const long double &b){return node(a.x*b,a.y*b);}
    inline friend long double operator *(const node &a,const node &b){return a.x*b.y-a.y*b.x;}
    inline friend long double operator /(const node &a,const node &b){return a.x*b.x+a.y*b.y;}
    inline friend long double slope(const node &a,const node &b){return atan2l(a.y-b.y,a.x-b.x);}
}rt[300010];
struct seg{
    node a,b;long double k;int id;
    seg(node aa=node(),node bb=node()){a=aa;b=bb;k=slope(aa,bb);id=0;}
    seg(node aa,node bb,long double kk){a=aa;b=bb;k=kk;id=0;}
    inline friend bool operator <(const seg &a,const seg &b){return a.k<b.k;}
    inline friend node cross(const seg &a,const seg &b){
        long double v1=(a.a-b.b)*(a.b-b.b);
        long double v2=(a.a-b.a)*(a.b-b.a);
        return b.b+(b.a-b.b)*(v1/(v1-v2));
    }
    inline friend bool right(const node &a,const seg &b){
        return ((a-b.b)*(a-b.a))>eps;
    }
}lis[300010],a[300010],q[300010];
inline bool solve(int lim){
    int i,head=1,tail=0,flag,tot=0;
    for(i=1;i<=m;i++) if(lis[i].id<=lim) a[++tot]=lis[i];
    for(i=1;i<=tot;i++){
        flag=0;
        while((head<=tail)&&(!sign(a[i].k-q[tail].k))){
            if(right(q[tail].a,a[i])) tail--;
            else{flag=1;break;}
        }
        if(flag) continue;
        while(head<tail&&right(rt[tail],a[i])) tail--;
        while(head<tail&&right(rt[head+1],a[i])) head++;
        q[++tail]=a[i];
        if(head<tail) rt[tail]=cross(q[tail],q[tail-1]);
    }
    while(head<tail&&right(rt[tail],q[head])) tail--;
    while(head<tail&&right(rt[head+1],q[tail])) head++;
    return (tail-head>1);
}
const long double pi=acos(-1.0);
int main(){
    n=read();int i;long double x1,y1,y2;
    m=n<<1;
    for(i=1;i<=n;i++){
        x1=read();y1=read();y2=read();
        lis[i]=seg(node(0,y1/x1),node(1,y1/x1-x1));
        lis[i+n]=seg(node(1,y2/x1-x1),node(0,y2/x1));
        lis[i].id=lis[i+n].id=i;
    }
    lis[++m]=seg(node(-1e12,1e12),node(-1e12,-1e12),pi/2.0);
    lis[++m]=seg(node(1e12,1e12),node(-1e12,1e12),0);
    lis[++m]=seg(node(1e12,-1e12),node(1e12,1e12),-pi/2.0);
    lis[++m]=seg(node(-1e12,-1e12),node(1e12,-1e12),pi);
    sort(lis+1,lis+m+1);
    int l=1,r=n,mid;
    while(l<r){
        mid=(l+r)>>1;mid++;
        if(solve(mid)) l=mid;
        else r=mid-1;
    }
    cout<<l<<'\n';
}
相關文章
相關標籤/搜索