最近在項目中,涉及到對行爲和狀態進行建模的需求,嘗試用有限狀態機(Finite-state machine, FSM)來實現。python
基於對有限狀態機的粗淺理解,大致的運行機制爲:ide
能夠認爲有限狀態機是一個離散系統,每接受一次輸入,進行一次判斷和切換。code
一個有限狀態機包含以下幾個要素:orm
狀態:系統所處的狀態,在運行過程當中又能夠分爲當前狀態和下一階段狀態;blog
事件:也能夠理解爲每一次運行的輸入;繼承
條件:根據輸入事件執行的斷定條件,條件是基於狀態的,當前所處的每一種狀態,均可以有本身對應的一套斷定條件,來決定下一步進入哪種狀態;事件
動做:肯定切換路徑後,執行的附加操做。ci
以一個共3種狀態的FSM爲例,共有3套斷定條件,根據當前所處的狀態來肯定使用哪種斷定條件,共有3*3=9種動做,決定每一種狀態切換過程當中須要執行的動做。input
一般能夠用一個表格來對所處理的FSM進行分析,防止狀況的遺漏。it
在表格中分析清楚每一種狀態切換的斷定條件和執行動做,再用代碼實現,能夠最大程度地減輕思考的難度,減小錯誤的機率。
以OOP的方式,作了一個基礎的Python實現。
FSM基類:
class StateMachine: def __init__(self, cfg, states, events_handler, actions_handler): # config information for an instance self.cfg = cfg # define the states and the initial state self.states = [s.lower() for s in states] self.state = self.states[0] # process the inputs according to current state self.events = dict() # actions according to current transfer self.actions = {state: dict() for state in self.states} # cached data for temporary use self.records = dict() # add events and actions for i, state in enumerate(self.states): self._add_event(state, events_handler[i]) for j, n_state in enumerate(self.states): self._add_action(state, n_state, actions_handler[i][j]) def _add_event(self, state, handler): self.events[state] = handler def _add_action(self, cur_state, next_state, handler): self.actions[cur_state][next_state] = handler def run(self, inputs): # decide the state-transfer according to the inputs new_state, outputs = self.events[self.state](inputs, self.states, self.records, self.cfg) # do the actions related with the transfer self.actions[self.state][new_state](outputs, self.records, self.cfg) # do the state transfer self.state = new_state return new_state def reset(self): self.state = self.states[0] self.records = dict() return # handlers for events and actions, event_X and action_XX are all specific functions events_handlers = [event_A, event_B] actions_handlers = [[action_AA, action_AB], [action_BA, action_BB]] # define an instance of StateMachine state_machine = StateMachine(cfg, states, events_handlers, actions_handlers)
若是對於狀態機有具體的要求,能夠繼承這個基類進行派生。
好比,有對狀態機分層嵌套的需求。
class StateGeneral(StateMachine): def __init__(self, cfg, states): super(StateGeneral, self).__init__(cfg, states, events_handler, actions_handler) self.sub_state_machines = dict() def add_sub_fsm(self, name, fsm): self.sub_state_machines[name] = fsm def run(self, inputs): new_state, outputs = self.events[self.state](inputs, self.states, self.records, self.cfg) # operate the sub_state_machines in actions self.actions[self.state][new_state](outputs, self.records, self.cfg, \ self.sub_state_machines) self.state = new_state return new_state def reset(self): self.state = self.states[0] self.records = dict() for _, sub_fsm in self.sub_state_machines.items(): sub_fsm.reset() return