Numpy是Python作數據分析必須掌握的基礎庫之一,很是適合剛學習完Numpy基礎的同窗,完成如下習題能夠幫助你更好的掌握這個基礎庫。python
Python版本:Python 3.6.2git
Numpy版本:Numpy 1.13.1github
<center><img src="http://www.numpy.org/_static/numpy_logo.png")></center>bootstrap
(提示: import … as …)數組
import numpy as np
(提示: np.__verison__, np.show_config)app
print (np.__version__) np.show_config()
(提示: np.zeros)dom
Z = np.zeros(10) print (Z)
(提示: size, itemsize)分佈式
Z = np.zeros((10, 10)) print (Z.size * Z.itemsize)
(提示: np.info)ide
np.info(np.add)
(提示: array[4])函數
Z = np.zeros(10) Z[4] = 1 print (Z)
(提示: np.arange)
Z = np.arange(10, 50) print (Z)
(提示: array[::-1])
Z = np.arange(50) Z = Z[::-1] print (Z)
(提示: reshape)
Z = np.arange(9).reshape(3, 3) print (Z)
(提示: np.nonzero)
nz = np.nonzero([1, 2, 0, 0, 4, 0]) print (NZ)
(提示: np.eye)
Z = np.eye(3) print (Z)
(提示: np.random.random)
Z = np.random.random((3, 3, 3)) print (Z)
(提示: max, min)
Z = np.random.random((10, 10)) Zmax, Zmin = Z.max(), Z.min() print (Z.max, Z.min)
(提示: mean)
Z = np.random.random(30) mean = Z.mean() print (mean)
(提示: array[1:-1, 1:-1])
Z = np.ones((10, 10)) Z[1:-1, 1:-1] = 0 print (Z)
(提示: np.pad)
Z = np.ones((10, 10)) Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0) print (Z)
(提示: NaN = not a number, inf = infinity)
(提示:NaN : 不是一個數,inf : 無窮)
# 表達式 # 結果 0 * np.nan nan np.nan == np.nan False np.inf > np.nan False np.nan - np.nan nan 0.3 == 3 * 0.1 False
(提示: np.diag)
Z = np.diag([1, 2, 3, 4], k=-1) #k=-1保證了偏移 print (Z)
輸出爲:
array([[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0], [0, 0, 0, 4, 0]])
(提示: array[::2])
Z = np.zeros((8, 8), dtype=int) Z[1::2, ::2] = 1 Z[::2, 1::2] = 1 print (Z)
(提示: np.unravel_index)
print (np.unravel_index(100, (6, 7, 8)))
(提示: np.tile)
Z = np.tile(np.array([[1, 0], [0, 1]]), (4, 4)) print (Z)
(提示: (x - min) / (max - min))
Z = np.random.random((5, 5)) Zmax, Zmin = Z.max(), Z.min() Z = (Z-Zmin)/(Zmax-Zmin) print (Z)
(提示: np.dtype)
color = np.dtype([("r", np.ubyte, 1), ("g", np.ubyte, 1), ("b", np.ubyte, 1), ("a", np.ubyte, 1)]) c = np.array((255, 255, 255, 1), dtype=color) print (c) Out[80]: array((255, 255, 255, 1), dtype=[('r', 'u1'), ('g', 'u1'), ('b', 'u1'), ('a', 'u1')])
(提示: np.dot | @)
Z = np.dot(np.zeros((5, 3)), np.zeros((3, 2))) # 或者 Z = np.zeros((5, 3))@ np.zeros((3, 2)) print (Z)
(提示: >, <=)
Z = np.arange(11) Z[(3 <= Z) & (Z < 8)] *= -1 print (Z)
(提示: np.sum)
# Author: Jake VanderPlas # 結果 print(sum(range(5),-1)) 9 from numpy import * print(sum(range(5),-1)) 10 #numpy.sum(a, axis=None)
Z**Z True 2 << Z >> 2 False Z <- Z True 1j*Z True #複數 Z/1/1 True Z<Z>Z False
np.array(0) / np.array(0) nan np.array(0) // np.array(0) 0 np.array([np.nan]).astype(int).astype(float) -2.14748365e+09
(提示: np.uniform, np.copysign, np.ceil, np.abs)
# Author: Charles R Harris Z = np.random.uniform(-10,+10,10) print (np.copysign(np.ceil(np.abs(Z)), Z))
(提示: np.intersect1d)
Z1 = np.random.randint(0, 10, 10) Z2 = np.random.randint(0, 10, 10) print (np.intersect1d(Z1, Z2))
numpy集合合併np.unique(np.concat(a,b))
(提示: np.seterr, np.errstate)
# Suicide mode on defaults = np.seterr(all="ignore") Z = np.ones(1) / 0 # Back to sanity _ = np.seterr(**defaults) # 另外一個等價的方式, 使用上下文管理器(context manager) with np.errstate(divide='ignore'): Z = np.ones(1) / 0
(提示: 虛數)
np.sqrt(-1) == np.emath.sqrt(-1) False
(提示: np.datetime64, np.timedelta64)
yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D') today = np.datetime64('today', 'D') tomorrow = np.datetime64('today', 'D') + np.timedelta64(1, 'D')
(提示: np.arange(dtype=datetime64['D']))
Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]') print (Z)
合理使用out能夠提高時空效率。 (提示: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=))
A = np.ones(3) * 1 B = np.ones(3) * 1 C = np.ones(3) * 1 np.add(A, B, out=B) np.divide(A, 2, out=A) np.negative(A, out=A) np.multiply(A, B, out=A)
(提示: %, np.floor, np.ceil, astype, np.trunc)
Z = np.random.uniform(0, 10, 10) print (Z - Z % 1) print (np.floor(Z)) print (np.cell(Z)-1) print (Z.astype(int)) print (np.trunc(Z))
(提示: np.arange)
Z = np.zeros((5, 5)) Z += np.arange(5) print (Z)
(提示: np.fromiter)
def generate(): for x in range(10): yield x Z = np.fromiter(generate(), dtype=float, count=-1) print (Z)
(提示: np.linspace)
Z = np.linspace(0, 1, 12, endpoint=True)[1: -1] print (Z)
(提示: sort)
Z = np.random.random(10) Z.sort() print (Z)
另外一種複雜寫法:按照下標進行排序。Z=Z[np.argsort(Z)]
(提示: np.add.reduce)
# Author: Evgeni Burovski Z = np.arange(10) np.add.reduce(Z) # np.add.reduce 是numpy.add模塊中的一個ufunc(universal function)函數,C語言實現
等價於np.cumsum(Z)
(提示: np.allclose, np.array_equal)
A = np.random.randint(0, 2, 5) B = np.random.randint(0, 2, 5) # 假設array的形狀(shape)相同和一個偏差容限(tolerance) equal = np.allclose(A,B) print(equal) # 檢查形狀和元素值,沒有偏差容限(值必須徹底相等) equal = np.array_equal(A,B) print(equal)
(提示: flags.writeable)
Z = np.zeros(5) Z.flags.writeable = False Z[0] = 1
(提示: np.sqrt, np.arctan2)
Z = np.random.random((10, 2)) X, Y = Z[:, 0], Z[:, 1] R = np.sqrt(X**2 + Y**2) T = np.arctan2(Y, X) print (R) print (T)
(提示: argmax)
Z = np.random.random(10) Z[Z.argmax()] = 0 print (Z)
x
和y
座標覆蓋[0, 1]x[1, 0]
區域 (★★☆)(提示: np.meshgrid)
Z = np.zeros((5, 5), [('x', float), ('y', float)]) Z['x'], Z['y'] = np.meshgrid(np.linspace(0, 1, 5), np.linspace(0, 1, 5)) print (Z)
X
和Y
,構造柯西(Cauchy)矩陣C ($C_{ij}=\frac{1}{x_i-y_j}$) (★★☆)# Author: Evgeni Burovski X = np.arange(8) Y = X + 0.5 C = 1.0 / np.subtract.outer(X, Y) print (C) print(np.linalg.det(C)) # 計算行列式
(提示: np.iinfo, np.finfo, eps)
for dtype in [np.int8, np.int32, np.int64]: print(np.iinfo(dtype).min) print(np.iinfo(dtype).max) for dtype in [np.float32, np.float64]: print(np.finfo(dtype).min) print(np.finfo(dtype).max) print(np.finfo(dtype).eps)
(提示: np.set_printoptions)
np.set_printoptions(threshold=np.nan) Z = np.zeros((16,16)) print(Z)
(提示: argmin)
Z = np.arange(100) v = np.random.uniform(0, 100) index = (np.abs(Z-v)).argmin() print(Z[index])
(提示: dtype)
Z = np.zeros(10, [('position', [('x', float, 1), ('y', float, 1)]), ('color', [('r', float, 1), ('g', float, 1), ('b', float, 1)])]) print (Z)
(提示: np.atleast_2d, T, np.sqrt)
Z = np.random.random((100, 2)) X, Y = np.atleast_2d(Z[:, 0], Z[:, 1]) D = np.sqrt((X-X.T)**2 + (Y-Y.T)**2) print (D) # 使用scipy庫能夠更快 import scipy.spatial Z = np.random.random((100,2)) D = scipy.spatial.distance.cdist(Z,Z) print(D)
(提示: astype(copy=False))
Z = np.arange(10, dtype=np.int32) Z = Z.astype(np.float32, copy=False) print(Z)
(提示: np.genfromtxt)
1, 2, 3, 4, 5 6, , , 7, 8 , , 9,10,11 # 先把上面保存到文件example.txt中 # 這裏不使用StringIO, 由於Python2 和Python3 在這個地方有兼容性問題 Z = np.genfromtxt("example.txt", delimiter=",") print(Z)
(提示: np.ndenumerate, np.ndindex)
Z = np.arange(9).reshape(3,3) for index, value in np.ndenumerate(Z): print(index, value) for index in np.ndindex(Z.shape): print(index, Z[index])
(提示: np.meshgrid, np.exp)
X, Y = np.meshgrid(np.linspace(-1, 1, 10), np.linspace(-1, 1, 10)) D = np.sqrt(X**2 + Y**2) sigma, mu = 1.0, 0.0 G = np.exp(-( (D-mu)**2 / (2.0*sigma**2) )) print (G)
(提示: np.put, np.random.choice)
# Author: Divakar n = 10 p = 3 Z = np.zeros((n,n)) np.put(Z, np.random.choice(range(n*n), p, replace=False),1) print(Z)
(提示: mean(axis=,keepdims=))
# Author: Warren Weckesser X = np.random.rand(5, 10) # 新 Y = X - X.mean(axis=1, keepdims=True) # 舊 Y = X - X.mean(axis=1).reshape(-1, 1) print(Y)
(提示: argsort)
# Author: Steve Tjoa Z = np.random.randint(0,10,(3,3)) print(Z) print(Z[ Z[:,1].argsort() ])
(提示: any, ~)
# Author: Warren Weckesser Z = np.random.randint(0,3,(3,10)) print((~Z.any(axis=0)).any())
(提示: np.abs, argmin, flat)
Z = np.random.uniform(0,1,10) z = 0.5 m = Z.flat[np.abs(Z - z).argmin()] print(m)
(提示: np.nditer)
A = np.arange(3).reshape(3, 1) B = np.arange(3).reshape(1, 3) it = np.nditer([A, B, None]) for x, y, z in it: z[...] = x + y print (it.operands[2])
(提示: class method)
class NameArray(np.ndarray): def __new__(cls, array, name="no name"): obj = np.asarray(array).view(cls) obj.name = name return obj def __array_finalize__(self, obj): if obj is None: return self.info = getattr(obj, 'name', "no name") Z = NamedArray(np.arange(10), "range_10") print (Z.name)
(提示: np.bincount | np.add.at)
# Author: Brett Olsen Z = np.ones(10) I = np.random.randint(0,len(Z),20) Z += np.bincount(I, minlength=len(Z)) print(Z) # Another solution # Author: Bartosz Telenczuk np.add.at(Z, I, 1) print(Z)
I
將向量X
的元素累加到數組F
? (★★★)(提示: np.bincount)
# Author: Alan G Isaac X = [1,2,3,4,5,6] I = [1,3,9,3,4,1] F = np.bincount(I,X) print(F)
(提示: np.unique)
# Author: Nadav Horesh w,h = 16,16 I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte) F = I[...,0]*256*256 + I[...,1]*256 +I[...,2] n = len(np.unique(F)) print(np.unique(I))
(提示: sum(axis=(-2,-1)))
A = np.random.randint(0,10,(3,4,3,4)) # 傳遞一個元組(numpy 1.7.0) sum = A.sum(axis=(-2,-1)) print(sum) # 將最後兩個維度壓縮爲一個 # (適用於不接受軸元組參數的函數) sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1) print(sum)
(提示: np.bincount)
# Author: Jaime Fernández del Río D = np.random.uniform(0,1,100) S = np.random.randint(0,10,100) D_sums = np.bincount(S, weights=D) D_counts = np.bincount(S) D_means = D_sums / D_counts print(D_means) # Pandas solution as a reference due to more intuitive code import pandas as pd print(pd.Series(D).groupby(S).mean())
(提示: np.diag)
# Author: Mathieu Blondel A = np.random.uniform(0,1,(5,5)) B = np.random.uniform(0,1,(5,5)) # Slow version np.diag(np.dot(A, B)) # Fast version np.sum(A * B.T, axis=1) # Faster version np.einsum("ij,ji->i", A, B)
(提示: array[::4])
# Author: Warren Weckesser Z = np.array([1,2,3,4,5]) nz = 3 Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz)) Z0[::nz+1] = Z print(Z0)
(提示: array[:, :, None])
A = np.ones((5,5,3)) B = 2*np.ones((5,5)) print(A * B[:,:,None])
(提示: array[[]] = array[[]])
# Author: Eelco Hoogendoorn A = np.arange(25).reshape(5,5) A[[0,1]] = A[[1,0]] print(A)
(提示: repeat, np.roll, np.sort, view, np.unique)
# Author: Nicolas P. Rougier faces = np.random.randint(0,100,(10,3)) F = np.roll(faces.repeat(2,axis=1),-1,axis=1) F = F.reshape(len(F)*3,2) F = np.sort(F,axis=1) G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] ) G = np.unique(G) print(G)
C
,如何生成一個數組A
知足np.bincount(A)==C
? (★★★)(提示: np.repeat)
# Author: Jaime Fernández del Río C = np.bincount([1,1,2,3,4,4,6]) A = np.repeat(np.arange(len(C)), C) print(A)
(提示: np.cumsum)
# Author: Jaime Fernández del Río def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n Z = np.arange(20) print(moving_average(Z, n=3))
(提示: from numpy.lib import stride_tricks)
# Author: Joe Kington / Erik Rigtorp from numpy.lib import stride_tricks def rolling(a, window): shape = (a.size - window + 1, window) strides = (a.itemsize, a.itemsize) return stride_tricks.as_strided(a, shape=shape, strides=strides) Z = rolling(np.arange(10), 3) print(Z)
sign
)? (★★★)(提示: np.logical_not, np.negative)
# Author: Nathaniel J. Smith Z = np.random.randint(0,2,100) np.logical_not(Z, out=Z) Z = np.random.uniform(-1.0,1.0,100) np.negative(Z, out=Z)
P0
和P1
去描述一組線(二維)和一個點p
,如何計算點p
到每一條線 i (P0[i],P1[i])
的距離? (★★★)def distance(P0, P1, p): T = P1 - P0 L = (T**2).sum(axis=1) U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L U = U.reshape(len(U),1) D = P0 + U*T - p return np.sqrt((D**2).sum(axis=1)) P0 = np.random.uniform(-10,10,(10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10,10,( 1,2)) print(distance(P0, P1, p))
P0
和P1
去描述一組線(二維)和一組點集P
,如何計算每個點 j(P[j])
到每一條線 i (P0[i],P1[i])
的距離? (★★★)# Author: Italmassov Kuanysh # based on distance function from previous question P0 = np.random.uniform(-10, 10, (10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10, 10, (10,2)) print(np.array([distance(P0,P1,p_i) for p_i in p]))
(提示: minimum, maximum)
# Author: Nicolas Rougier Z = np.random.randint(0,10,(10,10)) shape = (5,5) fill = 0 position = (1,1) R = np.ones(shape, dtype=Z.dtype)*fill P = np.array(list(position)).astype(int) Rs = np.array(list(R.shape)).astype(int) Zs = np.array(list(Z.shape)).astype(int) R_start = np.zeros((len(shape),)).astype(int) R_stop = np.array(list(shape)).astype(int) Z_start = (P-Rs//2) Z_stop = (P+Rs//2)+Rs%2 R_start = (R_start - np.minimum(Z_start,0)).tolist() Z_start = (np.maximum(Z_start,0)).tolist() R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist() Z_stop = (np.minimum(Z_stop,Zs)).tolist() r = [slice(start,stop) for start,stop in zip(R_start,R_stop)] z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)] R[r] = Z[z] print(Z) print(R)
Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
,如何生成一個數組R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ...,[11,12,13,14]]
? (★★★)(提示: stride_tricks.as_strided)
# Author: Stefan van der Walt Z = np.arange(1,15,dtype=np.uint32) R = stride_tricks.as_strided(Z,(11,4),(4,4)) print(R)
(提示: np.linalg.svd)
# Author: Stefan van der Walt Z = np.random.uniform(0,1,(10,10)) U, S, V = np.linalg.svd(Z) # Singular Value Decomposition rank = np.sum(S > 1e-10) print(rank)
(提示: np.bincount, argmax)
Z = np.random.randint(0,10,50) print(np.bincount(Z).argmax())
10x10
的矩陣中提取出連續的3x3
區塊**(★★★)(提示: stride_tricks.as_strided)
# Author: Chris Barker Z = np.random.randint(0,5,(10,10)) n = 3 i = 1 + (Z.shape[0]-3) j = 1 + (Z.shape[1]-3) C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides) print(C)
Z[i,j] == Z[j,i]
的二維數組子類 (★★★)(提示: class method)
# Author: Eric O. Lebigot # Note: only works for 2d array and value setting using indices class Symetric(np.ndarray): def __setitem__(self, index, value): i,j = index super(Symetric, self).__setitem__((i,j), value) super(Symetric, self).__setitem__((j,i), value) def symetric(Z): return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric) S = symetric(np.random.randint(0,10,(5,5))) S[2,3] = 42 print(S)
nxn
矩陣和一組形狀爲(n,1)
的向量,如何直接計算p個矩陣的乘積(n,1)
? (★★★)(提示: np.tensordot)
# Author: Stefan van der Walt p, n = 10, 20 M = np.ones((p,n,n)) V = np.ones((p,n,1)) S = np.tensordot(M, V, axes=[[0, 2], [0, 1]]) print(S) # It works, because: # M is (p,n,n) # V is (p,n,1) # Thus, summing over the paired axes 0 and 0 (of M and V independently), # and 2 and 1, to remain with a (n,1) vector.
16x16
的數組,如何獲得一個區域的和(區域大小爲4x4
)? (★★★)(提示: np.add.reduceat)
# Author: Robert Kern Z = np.ones((16,16)) k = 4 S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1) print(S)
numpy
數組實現Game of Life? (★★★)(提示: Game of Life , Game of Life有哪些圖形?)
# Author: Nicolas Rougier def iterate(Z): # Count neighbours N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] + Z[1:-1,0:-2] + Z[1:-1,2:] + Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:]) # Apply rules birth = (N==3) & (Z[1:-1,1:-1]==0) survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1) Z[...] = 0 Z[1:-1,1:-1][birth | survive] = 1 return Z Z = np.random.randint(0,2,(50,50)) for i in range(100): Z = iterate(Z) print(Z)
(提示: np.argsort | np.argpartition)
Z = np.arange(10000) np.random.shuffle(Z) n = 5 # Slow print (Z[np.argsort(Z)[-n:]]) # Fast print (Z[np.argpartition(-Z,n)[:n]])
(提示: np.indices)
# Author: Stefan Van der Walt def cartesian(arrays): arrays = [np.asarray(a) for a in arrays] shape = (len(x) for x in arrays) ix = np.indices(shape, dtype=int) ix = ix.reshape(len(arrays), -1).T for n, arr in enumerate(arrays): ix[:, n] = arrays[n][ix[:, n]] return ix print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
record array
)? (★★★)(提示: np.core.records.fromarrays)
Z = np.array([("Hello", 2.5, 3), ("World", 3.6, 2)]) R = np.core.records.fromarrays(Z.T, names='col1, col2, col3', formats = 'S8, f8, i8') print(R)
Z
, 用三種不一樣的方法計算它的立方 (★★★)(提示: np.power, *, np.einsum)
# Author: Ryan G. x = np.random.rand(5e7) %timeit np.power(x,3) %timeit x*x*x %timeit np.einsum('i,i,i->i',x,x,x)
(8,3)
和(2,2)
的數組A
和B
. 如何在數組A
中找到知足包含B
中元素的行?(不考慮B
中每行元素順序)? (★★★)(提示: np.where)
# Author: Gabe Schwartz A = np.random.randint(0,5,(8,3)) B = np.random.randint(0,5,(2,2)) C = (A[..., np.newaxis, np.newaxis] == B) rows = np.where(C.any((3,1)).all(1))[0] print(rows)
10x3
的矩陣,如何分解出有不全相同值的行 (如 [2,2,3]
)** (★★★)# Author: Robert Kern Z = np.random.randint(0,5,(10,3)) print(Z) # solution for arrays of all dtypes (including string arrays and record arrays) E = np.all(Z[:,1:] == Z[:,:-1], axis=1) U = Z[~E] print(U) # soluiton for numerical arrays only, will work for any number of columns in Z U = Z[Z.max(axis=1) != Z.min(axis=1),:] print(U)
(提示: np.unpackbits)
# Author: Warren Weckesser I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128]) B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int) print(B[:,::-1]) # Author: Daniel T. McDonald I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8) print(np.unpackbits(I[:, np.newaxis], axis=1))
(提示: np.ascontiguousarray)
# Author: Jaime Fernández del Río Z = np.random.randint(0,2,(6,3)) T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1]))) _, idx = np.unique(T, return_index=True) uZ = Z[idx] print(uZ)
A
和B
,寫出用einsum
等式對應的inner, outer, sum, mul
函數 (★★★)(提示: np.einsum)
# Author: Alex Riley # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/ A = np.random.uniform(0,1,10) B = np.random.uniform(0,1,10) np.einsum('i->', A) # np.sum(A) np.einsum('i,i->i', A, B) # A * B np.einsum('i,i', A, B) # np.inner(A, B) np.einsum('i,j->ij', A, B) # np.outer(A, B)
(X,Y)
,如何用等距樣例(equidistant samples
)對其進行採樣(sample
)**(★★★)?(提示: np.cumsum, np.interp)
# Author: Bas Swinckels phi = np.arange(0, 10*np.pi, 0.1) a = 1 x = a*phi*np.cos(phi) y = a*phi*np.sin(phi) dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths r = np.zeros_like(x) r[1:] = np.cumsum(dr) # integrate path r_int = np.linspace(0, r.max(), 200) # regular spaced path x_int = np.interp(r_int, r, x) # integrate path y_int = np.interp(r_int, r, y)
(提示: np.logical_and.reduce, np.mod)
# Author: Evgeni Burovski X = np.asarray([[1.0, 0.0, 3.0, 8.0], [2.0, 0.0, 1.0, 1.0], [1.5, 2.5, 1.0, 0.0]]) n = 4 M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1) M &= (X.sum(axis=-1) == n) print(X[M])
X
,計算它boostrapped以後的95%置信區間的平均值. (★★★)(提示: np.percentile)
# Author: Jessica B. Hamrick X = np.random.randn(100) # random 1D array N = 1000 # number of bootstrap samples idx = np.random.randint(0, X.size, (N, X.size)) means = X[idx].mean(axis=1) confint = np.percentile(means, [2.5, 97.5]) print(confint)