題目以下:spa
Alice and Bob take turns playing a game, with Alice starting first.code
Initially, there is a number
N
on the chalkboard. On each player's turn, that player makes a move consisting of:blog
- Choosing any
x
with0 < x < N
andN % x == 0
.- Replacing the number
N
on the chalkboard withN - x
.Also, if a player cannot make a move, they lose the game.ci
Return
True
if and only if Alice wins the game, assuming both players play optimally.input
Example 1:it
Input: 2 Output: true Explanation: Alice chooses 1, and Bob has no more moves.
Example 2:io
Input: 3 Output: false Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves.
Note:class
1 <= N <= 1000
解題思路:假設當前操做是Bob選擇,咱們能夠定義一個集合dic = {},裏面存儲的元素Bob必輸的局面。例如當前N=1,那麼Bob沒法作任何移動,是必輸的場面,記dic[1] = 1。那麼對於Alice來講,在輪到本身操做的時候,只有選擇一個x,使得N-x在這個必輸的集合dic裏面,這樣就是必勝的策略。所以對於任意一個N,只要存在 N%x == 0 而且N-x in dic,那麼這個N對於Alice來講就是必勝的。只要計算一遍1~1000全部的值,把必輸的N存入dic中,最後判斷Input是否在dic中便可獲得結果。object
代碼以下:im
class Solution(object): dic = {1:1} def init(self): for i in range(2,1000+1): flag = False for j in range(1,i): if i % j == 0 and i - j in self.dic: flag = True break if flag == False: self.dic[i] = 1 def divisorGame(self, N): """ :type N: int :rtype: bool """ if len(self.dic) == 1: self.init() return N not in self.dic