[Swift]LeetCode1025. 除數博弈 | Divisor Game

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公衆號:山青詠芝(shanqingyongzhi)
➤博客園地址:山青詠芝(https://www.cnblogs.com/strengthen/
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: http://www.javashuo.com/article/p-pdhszdal-md.html 
➤若是連接不是山青詠芝的博客園地址,則多是爬取做者的文章。
➤原文已修改更新!強烈建議點擊原文地址閱讀!支持做者!支持原創!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html

Alice and Bob take turns playing a game, with Alice starting first.git

Initially, there is a number N on the chalkboard.  On each player's turn, that player makes a move consisting of:github

  • Choosing any x with 0 < x < N and N % x == 0.
  • Replacing the number N on the chalkboard with N - x.

Also, if a player cannot make a move, they lose the game.微信

Return True if and only if Alice wins the game, assuming both players play optimally.spa

Example 1:code

Input: 2
Output: true Explanation: Alice chooses 1, and Bob has no more moves. 

Example 2:htm

Input: 3
Output: false Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves.

Note:blog

  1. 1 <= N <= 1000

愛麗絲和鮑勃一塊兒玩遊戲,他們輪流行動。愛麗絲先手開局。遊戲

最初,黑板上有一個數字 N 。在每一個玩家的回合,玩家須要執行如下操做:ci

  • 選出任一 x,知足 0 < x < N 且 N % x == 0 。
  • 用 N - x 替換黑板上的數字 N 。

若是玩家沒法執行這些操做,就會輸掉遊戲。

只有在愛麗絲在遊戲中取得勝利時才返回 True,不然返回 false。假設兩個玩家都以最佳狀態參與遊戲。

示例 1:

輸入:2
輸出:true
解釋:愛麗絲選擇 1,鮑勃沒法進行操做。

示例 2:

輸入:3
輸出:false
解釋:愛麗絲選擇 1,鮑勃也選擇 1,而後愛麗絲沒法進行操做。

提示:

  1. 1 <= N <= 1000

Runtime: 4 ms
Memory Usage: 18.8 MB
1 class Solution {
2     func divisorGame(_ N: Int) -> Bool {
3         return N % 2 == 0        
4     }
5 }

Runtime: 4 ms

Memory Usage: 18.6 MB
 1 class Solution {
 2     func divisorGame(_ N: Int) -> Bool {
 3         var N = N
 4         var alice:Bool = false
 5         for x in 1..<N
 6         {
 7             alice.toggle()
 8             if N % x == 0
 9             {
10                 N -= x
11             }     
12         }
13         return alice
14     }
15 }

44ms
 1 class Solution {
 2     func divisorGame(_ N: Int) -> Bool {
 3         var dp = [Int:Bool]()
 4         dp[1] = false
 5         dp[2] = true
 6         
 7         var i = 3
 8         while i <= N{
 9             var x = i
10             var lose = false
11             dp[i] = false
12             repeat{
13                 x -= 1
14                 if (i%x == 0 && dp[i-x]! == false){
15                     dp[i] = true
16                 }
17             }while x > 1
18 
19             i += 1
20         }
21         
22         return dp[N]!
23     }
24 }
相關文章
相關標籤/搜索